PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 April 1; 65(Pt 4): o879–o880.
Published online 2009 March 28. doi:  10.1107/S1600536809010617
PMCID: PMC2968884

(E)-3-(4-Hexyl­oxyphen­yl)-1-(3-hydroxy­phen­yl)prop-2-en-one

Abstract

In the title compound, C21H24O3, the enone unit is in the scis configuration. The dihedral angle between the benzene rings is 2.18 (4)°. In the crystal, mol­ecules are linked by pairs of O—H(...)O inter­molecular hydrogen bonds, forming inversion dimers. The crystal structure is also consolidated by C—H(...)π inter­actions.

Related literature

For general background to the biological properties of chalcone derivatives, see: Bhat et al. (2005 [triangle]); Xue et al. (2004 [triangle]); Won et al. (2005 [triangle]); Yayli et al. (2006 [triangle]). For related structures, see: Ng, Razak et al. (2006 [triangle]); Ng, Patil et al. (2006 [triangle]). For details of hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]). For the stability of the temperature controller uded in the data collection, see: Cosier & Glazer (1986 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o879-scheme1.jpg

Experimental

Crystal data

  • C21H24O3
  • M r = 324.40
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o879-efi1.jpg
  • a = 8.5918 (2) Å
  • b = 17.1320 (3) Å
  • c = 12.4192 (2) Å
  • β = 109.083 (1)°
  • V = 1727.58 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 100 K
  • 0.52 × 0.43 × 0.37 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.959, T max = 0.970
  • 32772 measured reflections
  • 7567 independent reflections
  • 5739 reflections with I > 2σ(I)
  • R int = 0.026

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043
  • wR(F 2) = 0.131
  • S = 1.04
  • 7567 reflections
  • 222 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.48 e Å−3
  • Δρmin = −0.22 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT (Bruker, 2005 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809010617/fj2200sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809010617/fj2200Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

HKF and IAR thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312 and the Research University Golden Goose grant No. 1001/PFIZIK/811012. ZN and HH thank Universiti Malaysia Sarawak for the Geran Penyelidikan Dana Khas Inovasi, grant No. DI/01/2007(01). SMHF and NIAR thank the Malaysian Government and Universiti Malaysia Sarawak for providing scholarships for their postgraduate studies.

supplementary crystallographic information

Comment

Chalcone is a common natural pigment and one of the important intermediate in the biosynthesis of flavonoid. Synthetic and naturally occurring chalcones have been extensively studied and developed as one of the pharmaceutically important molecules. Chalcone derivatives are reported to possess a broad spectrum of biological properties such as an anticancer (Bhat et al., 2005) antimalarial (Xue et al., 2004), anti-inflammatory (Won et al., 2005), and antioxidant and antimicrobial activities (Yayli et al., 2006).

The synthesis of chalcone derivatives possessing alkyl chains of varying length has been synthesized in our lab and their antibacterial activities was tested against E. coli ATCC 8739. All the synthesized chalcone derivatives showed antimicrobial activity. In this paper, we report the structure of the title compound which is one of the chalcone derivatives mentioned above.

The bond lengths (Allen et al., 1987) and angles observed in (I) show normal values. The least-square plane through the enone moiety (O2C7C8C9) makes dihedral angles of 5.32 (5)° and 4.72 (5)° with the C1—C6 and C10—C15 benzene rings, respectively. The dihedral angle between these benzene rings is 2.18 (4)°. The alkoxyl tail is coplanar with the attached ring with the torsion angle C16—O3—C13—C14 being -0.26 (11)°.

The O2—C7—C8—C9 torsion angle of 4.1 (1)° shows that the enone moiety is in the s-cis configuration. The short H5A···H8A (2.12 Å) contact results in the widening of C5—C6—C7 (123.22 (7)°) angle while the widening of C8—C9—C10 (128.33 (7)°) and C9—C10—C11 (124.01 (7)°) angles are the result of close H8A···H11A (2.32 Å) contact. Similar strain induced by short H14A···H16A (2.32 Å) and H14A···H16A (2.28 Å) has also widened the C14—C13—O3 (124.19 (7)°) angles. These observations are also mentioned in structures reported by Ng, Razak et al. (2006) and Ng, Patil et al. (2006).

In the crystal, O1-H1O1···O2(-x - 1,-y,-z) intermolecular hydrogen bonds involving the keto and the hydroxy O atoms form molecular dimers. The crystal structure is further stabilized by C—H···π interactions.

Experimental

A mixture of 3-hydroxyacetophenone (1.23 g, 9 mmol) and 4-hexyloxybenzaldehyde (1.86 ml, 9 mmol) and KOH (1.82 g, 32.4 mmol) in 30 ml of methanol was heated at reflux for 12 h. The reaction was cooled to room temperature and acidified with cold diluted HCl (2 N). The resulting precipitate was filtered, washed and dried. The precipitate was dissolved in hexane–ethanol (7:1) mixture. After a few days of slow evaporation, colourless crystals were collected for X-ray analysis.

Refinement

All the H atoms were positioned geometrically and refined using a riding model with C—H = 0.93–0.97 Å. The Uiso values were constrained to be -1.5Uequ (methyl H atoms) and -1.2Uequ (other H atoms). The rotating model group was considered for the methyl group. In the case of O1, the hydrogen atom was located from a difference Fourier map and refined isotropically.

Figures

Fig. 1.
The asymmetric unit of the title compound, showing 50% probability displacement ellipsoids and the atom numbering scheme. Intramolecular H-bonds are drawn as dashed lines.
Fig. 2.
The packing viewed down the a axis showing the dimer formation. The symmetry code is given in Table 2.

Crystal data

C21H24O3F(000) = 696
Mr = 324.40Dx = 1.247 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 9979 reflections
a = 8.5918 (2) Åθ = 2.8–39.2°
b = 17.1320 (3) ŵ = 0.08 mm1
c = 12.4192 (2) ÅT = 100 K
β = 109.083 (1)°Block, colourless
V = 1727.58 (6) Å30.52 × 0.43 × 0.37 mm
Z = 4

Data collection

Bruker APEXII CCD area-detector diffractometer7567 independent reflections
Radiation source: sealed tube5739 reflections with I > 2σ(I)
graphiteRint = 0.026
[var phi] and ω scansθmax = 35.0°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Bruker, 2005)h = −13→13
Tmin = 0.959, Tmax = 0.970k = −22→27
32772 measured reflectionsl = −18→20

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131H atoms treated by a mixture of independent and constrained refinement
S = 1.04w = 1/[σ2(Fo2) + (0.0658P)2 + 0.3447P] where P = (Fo2 + 2Fc2)/3
7567 reflections(Δ/σ)max = 0.001
222 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = −0.22 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O1−0.67033 (8)−0.16211 (4)−0.11538 (5)0.02019 (13)
O2−0.24091 (8)0.00815 (4)0.14823 (5)0.01889 (12)
O30.57829 (7)0.01121 (4)0.74453 (5)0.01808 (12)
C1−0.43937 (9)−0.11205 (4)0.03753 (6)0.01426 (13)
H1A−0.4490−0.06360.00230.017*
C2−0.54671 (10)−0.17174 (5)−0.01437 (6)0.01515 (14)
C3−0.53013 (10)−0.24523 (5)0.03709 (7)0.01738 (15)
H3A−0.6009−0.28560.00200.021*
C4−0.40736 (10)−0.25769 (5)0.14089 (7)0.01789 (15)
H4A−0.3966−0.30660.17510.021*
C5−0.30007 (10)−0.19778 (5)0.19442 (7)0.01605 (14)
H5A−0.2183−0.20660.26390.019*
C6−0.31644 (9)−0.12429 (4)0.14274 (6)0.01352 (13)
C7−0.20986 (9)−0.05615 (5)0.19509 (6)0.01364 (13)
C8−0.06986 (10)−0.06665 (5)0.30060 (6)0.01473 (13)
H8A−0.0520−0.11460.33760.018*
C90.03228 (10)−0.00634 (5)0.34327 (6)0.01478 (14)
H9A0.00840.03980.30160.018*
C100.17496 (9)−0.00406 (5)0.44610 (6)0.01412 (13)
C110.22794 (10)−0.06753 (5)0.52147 (7)0.01577 (14)
H11A0.1714−0.11470.50490.019*
C120.36209 (10)−0.06102 (5)0.61936 (7)0.01651 (14)
H12A0.3952−0.10360.66790.020*
C130.44893 (9)0.00985 (5)0.64597 (6)0.01485 (14)
C140.39946 (10)0.07342 (5)0.57204 (7)0.01645 (14)
H14A0.45600.12050.58860.020*
C150.26459 (10)0.06536 (5)0.47334 (7)0.01590 (14)
H15A0.23310.10760.42390.019*
C160.66971 (10)0.08312 (5)0.77343 (7)0.01598 (14)
H16A0.59810.12480.78180.019*
H16B0.71370.09750.71350.019*
C170.80851 (10)0.07101 (5)0.88414 (7)0.01625 (14)
H17A0.88120.03030.87420.019*
H17B0.76360.05400.94250.019*
C180.90687 (10)0.14613 (5)0.92278 (7)0.01651 (14)
H18A0.95360.16200.86490.020*
H18B0.83260.18710.92950.020*
C191.04510 (10)0.13787 (5)1.03599 (7)0.01726 (14)
H19A1.11880.09661.02960.021*
H19B0.99840.12271.09420.021*
C201.14369 (11)0.21270 (5)1.07309 (8)0.02270 (17)
H20A1.18930.22831.01450.027*
H20B1.07040.25381.08060.027*
C211.28308 (13)0.20366 (7)1.18553 (9)0.0326 (2)
H21A1.34780.25051.20150.049*
H21B1.35140.16041.18050.049*
H21C1.23790.19431.24560.049*
H101−0.6888 (18)−0.1130 (9)−0.1279 (12)0.042 (4)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0200 (3)0.0164 (3)0.0173 (3)0.0002 (2)−0.0033 (2)−0.0017 (2)
O20.0204 (3)0.0150 (3)0.0177 (3)−0.0006 (2)0.0015 (2)0.0025 (2)
O30.0152 (3)0.0188 (3)0.0162 (3)−0.0034 (2)−0.0005 (2)−0.0007 (2)
C10.0138 (3)0.0135 (3)0.0142 (3)0.0008 (2)0.0029 (3)0.0001 (2)
C20.0138 (3)0.0162 (3)0.0137 (3)0.0009 (3)0.0020 (2)−0.0016 (2)
C30.0171 (3)0.0145 (3)0.0187 (3)−0.0014 (3)0.0033 (3)−0.0015 (3)
C40.0192 (4)0.0138 (3)0.0190 (3)0.0003 (3)0.0038 (3)0.0017 (3)
C50.0165 (3)0.0155 (3)0.0144 (3)0.0008 (3)0.0026 (3)0.0010 (3)
C60.0125 (3)0.0143 (3)0.0131 (3)0.0005 (2)0.0034 (2)−0.0006 (2)
C70.0129 (3)0.0151 (3)0.0127 (3)0.0001 (2)0.0037 (2)−0.0003 (2)
C80.0134 (3)0.0156 (3)0.0137 (3)0.0003 (2)0.0025 (2)0.0006 (2)
C90.0136 (3)0.0161 (3)0.0139 (3)0.0004 (3)0.0036 (2)−0.0008 (2)
C100.0128 (3)0.0156 (3)0.0136 (3)−0.0009 (2)0.0039 (2)−0.0013 (2)
C110.0146 (3)0.0153 (3)0.0164 (3)−0.0019 (3)0.0037 (3)−0.0007 (3)
C120.0155 (3)0.0164 (3)0.0161 (3)−0.0008 (3)0.0030 (3)0.0009 (3)
C130.0123 (3)0.0179 (3)0.0136 (3)−0.0004 (3)0.0032 (2)−0.0014 (2)
C140.0157 (3)0.0156 (3)0.0168 (3)−0.0025 (3)0.0035 (3)−0.0013 (3)
C150.0160 (3)0.0148 (3)0.0156 (3)−0.0006 (3)0.0033 (3)0.0004 (3)
C160.0135 (3)0.0175 (3)0.0160 (3)−0.0021 (3)0.0035 (3)−0.0019 (3)
C170.0133 (3)0.0190 (3)0.0150 (3)−0.0011 (3)0.0025 (3)−0.0004 (3)
C180.0143 (3)0.0172 (3)0.0161 (3)−0.0003 (3)0.0023 (3)−0.0003 (3)
C190.0152 (3)0.0190 (4)0.0153 (3)−0.0007 (3)0.0020 (3)−0.0003 (3)
C200.0204 (4)0.0199 (4)0.0235 (4)−0.0004 (3)0.0012 (3)−0.0051 (3)
C210.0271 (5)0.0418 (6)0.0223 (4)−0.0072 (4)−0.0010 (4)−0.0104 (4)

Geometric parameters (Å, °)

O1—C21.3631 (9)C12—C131.4067 (11)
O1—H1010.861 (16)C12—H12A0.9300
O2—C71.2336 (9)C13—C141.3980 (11)
O3—C131.3581 (9)C14—C151.3912 (11)
O3—C161.4419 (10)C14—H14A0.9300
C1—C21.3867 (11)C15—H15A0.9300
C1—C61.4016 (11)C16—C171.5111 (11)
C1—H1A0.9300C16—H16A0.9700
C2—C31.3980 (11)C16—H16B0.9700
C3—C41.3895 (11)C17—C181.5282 (11)
C3—H3A0.9300C17—H17A0.9700
C4—C51.3944 (11)C17—H17B0.9700
C4—H4A0.9300C18—C191.5217 (11)
C5—C61.3993 (11)C18—H18A0.9700
C5—H5A0.9300C18—H18B0.9700
C6—C71.4949 (11)C19—C201.5225 (12)
C7—C81.4717 (11)C19—H19A0.9700
C8—C91.3470 (11)C19—H19B0.9700
C8—H8A0.9300C20—C211.5214 (13)
C9—C101.4531 (11)C20—H20A0.9700
C9—H9A0.9300C20—H20B0.9700
C10—C151.3971 (11)C21—H21A0.9600
C10—C111.4096 (11)C21—H21B0.9600
C11—C121.3794 (11)C21—H21C0.9600
C11—H11A0.9300
C2—O1—H101109.0 (10)C15—C14—H14A120.4
C13—O3—C16117.24 (6)C13—C14—H14A120.4
C2—C1—C6120.45 (7)C14—C15—C10122.15 (7)
C2—C1—H1A119.8C14—C15—H15A118.9
C6—C1—H1A119.8C10—C15—H15A118.9
O1—C2—C1122.56 (7)O3—C16—C17108.23 (6)
O1—C2—C3117.51 (7)O3—C16—H16A110.1
C1—C2—C3119.92 (7)C17—C16—H16A110.1
C4—C3—C2119.70 (7)O3—C16—H16B110.1
C4—C3—H3A120.1C17—C16—H16B110.1
C2—C3—H3A120.1H16A—C16—H16B108.4
C3—C4—C5120.81 (7)C16—C17—C18111.16 (7)
C3—C4—H4A119.6C16—C17—H17A109.4
C5—C4—H4A119.6C18—C17—H17A109.4
C4—C5—C6119.47 (7)C16—C17—H17B109.4
C4—C5—H5A120.3C18—C17—H17B109.4
C6—C5—H5A120.3H17A—C17—H17B108.0
C5—C6—C1119.63 (7)C19—C18—C17113.34 (7)
C5—C6—C7123.22 (7)C19—C18—H18A108.9
C1—C6—C7117.14 (7)C17—C18—H18A108.9
O2—C7—C8121.13 (7)C19—C18—H18B108.9
O2—C7—C6119.01 (7)C17—C18—H18B108.9
C8—C7—C6119.86 (7)H18A—C18—H18B107.7
C9—C8—C7119.62 (7)C18—C19—C20112.97 (7)
C9—C8—H8A120.2C18—C19—H19A109.0
C7—C8—H8A120.2C20—C19—H19A109.0
C8—C9—C10128.33 (7)C18—C19—H19B109.0
C8—C9—H9A115.8C20—C19—H19B109.0
C10—C9—H9A115.8H19A—C19—H19B107.8
C15—C10—C11117.59 (7)C21—C20—C19112.66 (8)
C15—C10—C9118.39 (7)C21—C20—H20A109.1
C11—C10—C9124.01 (7)C19—C20—H20A109.1
C12—C11—C10121.22 (7)C21—C20—H20B109.1
C12—C11—H11A119.4C19—C20—H20B109.1
C10—C11—H11A119.4H20A—C20—H20B107.8
C11—C12—C13120.19 (7)C20—C21—H21A109.5
C11—C12—H12A119.9C20—C21—H21B109.5
C13—C12—H12A119.9H21A—C21—H21B109.5
O3—C13—C14124.19 (7)C20—C21—H21C109.5
O3—C13—C12116.20 (7)H21A—C21—H21C109.5
C14—C13—C12119.61 (7)H21B—C21—H21C109.5
C15—C14—C13119.22 (7)
C6—C1—C2—O1178.55 (7)C8—C9—C10—C11−1.52 (13)
C6—C1—C2—C3−1.49 (11)C15—C10—C11—C120.84 (11)
O1—C2—C3—C4−179.16 (7)C9—C10—C11—C12−178.31 (7)
C1—C2—C3—C40.88 (12)C10—C11—C12—C130.14 (12)
C2—C3—C4—C5−0.11 (12)C16—O3—C13—C14−0.26 (11)
C3—C4—C5—C6−0.05 (12)C16—O3—C13—C12179.73 (7)
C4—C5—C6—C1−0.54 (11)C11—C12—C13—O3179.37 (7)
C4—C5—C6—C7178.46 (7)C11—C12—C13—C14−0.64 (12)
C2—C1—C6—C51.32 (11)O3—C13—C14—C15−179.87 (7)
C2—C1—C6—C7−177.75 (7)C12—C13—C14—C150.13 (12)
C5—C6—C7—O2−174.30 (7)C13—C14—C15—C100.89 (12)
C1—C6—C7—O24.73 (10)C11—C10—C15—C14−1.37 (11)
C5—C6—C7—C86.05 (11)C9—C10—C15—C14177.83 (7)
C1—C6—C7—C8−174.92 (7)C13—O3—C16—C17−178.97 (6)
O2—C7—C8—C9−4.05 (11)O3—C16—C17—C18−177.65 (6)
C6—C7—C8—C9175.59 (7)C16—C17—C18—C19178.18 (6)
C7—C8—C9—C10179.11 (7)C17—C18—C19—C20179.31 (7)
C8—C9—C10—C15179.34 (8)C18—C19—C20—C21−179.22 (8)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H101···O2i0.86 (2)1.89 (2)2.739 (1)171 (2)
C16—H16A···Cg1ii0.972.723.572 (1)146
C20—H20A···Cg1iii0.972.823.642 (1)143

Symmetry codes: (i) −x−1, −y, −z; (ii) −x, −y, −z+1; (iii) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2200).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  • Bhat, B. A., Dhar, K. L., Puri, S. C., Saxena, A. K., Shanmugavel, M. & Qazi, G. N. (2005). Bioorg. Med. Chem. Lett 15, 3177–3180. [PubMed]
  • Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  • Ng, S.-L., Patil, P. S., Razak, I. A., Fun, H.-K. & Dharmaprakash, S. M. (2006). Acta Cryst. E62, o1228–o1230.
  • Ng, S.-L., Razak, I. A., Fun, H.-K., Shettigar, V., Patil, P. S. & Dharmaprakash, S. M. (2006). Acta Cryst. E62, o2175–o2177.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Won, S. J., Liu, C. T., Tsao, L. T., Weng, J. R., Ko, H. H., Wang, J. P. & Lin, C. N. (2005). Eur. J. Med. Chem.40, 103–112. [PubMed]
  • Xue, C. X., Cui, S. Y., Liu, M. C., Hu, Z. D. & Fan, B. T. (2004). Eur. J. Med. Chem.39, 745–753. [PubMed]
  • Yayli, N., Ucuncu, O., Yasar, A., Kucuk, M., Yayli, N., Akyuz, E. & Alpay-Karaoglu, S. (2006). Turk. J. Chem.30, 505–514.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography