PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 April 1; 65(Pt 4): o678.
Published online 2009 March 6. doi:  10.1107/S1600536809007272
PMCID: PMC2968879

(E)-6-Chloro-N′-(3,5-dichloro-2-hydroxy­benzyl­idene)­nicotinohydrazide

Abstract

The title Schiff base compound, C13H8Cl3N3O2, was synthesized by the condensation reaction of 3,5-dichloro­salicyl­aldehyde with 6-chloro­nicotinic acid hydrazide in 95% ethanol. The mol­ecule is nearly planar, with a dihedral angle of 1.9 (2)° between the aromatic ring planes, and an intra­molecular O—H(...)N hydrogen bond is observed. In the crystal, the mol­ecules are connected by inter­molecular N—H(...)O hydrogen bonds into infinite chains propagating in [100].

Related literature

For general background, see: Kim et al. (2005 [triangle]); Fan et al. (2007 [triangle]). For background on the biological activities of Schiff bases, see: Ren et al. (2002 [triangle]); Takeuchi et al. (1998 [triangle]). For a related structure, see: Zhi (2008 [triangle]). For reference structural data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o678-scheme1.jpg

Experimental

Crystal data

  • C13H8Cl3N3O2
  • M r = 344.57
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o678-efi1.jpg
  • a = 4.8920 (10) Å
  • b = 18.014 (4) Å
  • c = 16.112 (3) Å
  • β = 97.90 (3)°
  • V = 1406.4 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.66 mm−1
  • T = 298 K
  • 0.27 × 0.23 × 0.23 mm

Data collection

  • Siemens SMART CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Siemens, 1996 [triangle]) T min = 0.842, T max = 0.864
  • 7275 measured reflections
  • 2478 independent reflections
  • 1323 reflections with I > 2σ(I)
  • R int = 0.078

Refinement

  • R[F 2 > 2σ(F 2)] = 0.049
  • wR(F 2) = 0.114
  • S = 1.01
  • 2478 reflections
  • 191 parameters
  • H-atom parameters constrained
  • Δρmax = 0.25 e Å−3
  • Δρmin = −0.40 e Å−3

Data collection: SMART (Siemens, 1996 [triangle]); cell refinement: SAINT (Siemens, 1996 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809007272/hb2920sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809007272/hb2920Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Schiff base compounds have been widely investigated over a century (Fan et al., 2007; Kim et al., 2005). Some of the complexes derived from Schiff bases have been found to have pharmacological and antitumor properties (Ren et al., 2002; Takeuchi,et al., 1998). In this paper, the crystal structure of the title compound, (I), a new Schiff base compound derived from the condensation reaction of 3,5-dichlorosalicylaldehyde with 6-chloronicotinic acid hydrazide is reported.

The molecule of (I) displays a trans configuration with respect to the C=N and C—N bonds (Fig. 1). All the bond lengths are within normal ranges (Allen et al., 1987), and are comparable to those in the related compound 6-chloro-N'-(2-hydroxy-1-naphthylmethylene)nicotinohydrazide (Zhi 2008). The Schiff base molecule is nearly planar, with a dihedral angle between the benzene ring and the pyridine ring of 1.9 (2)°. An intramolecular O—H···N hydrogen bond is observed. The molecules are connected via intermolecular N—H···O hydrogen bonds into infinite chains along the a axis (Table 1, Fig. 2).

Experimental

3,5-Dichlorosalicylaldehyde (0.1 mmol, 19.0 mg) and 6-chloronicotinic acid hydrazide (0.1 mmol, 17.1 mg) were dissolved in a 95% ethanol solution (10 ml). The mixture was stirred at room temperature to give a clear colorless solution. Light yellow blocks of (I) were formed by gradual evaporation of the solvent over a period of five days at room temperature.

Refinement

All H atoms were placed in geometrically idealized positions, with C—H = 0.93 Å, O—H = 0.82 Å and N—H = 0.86 Å and refined as riding with Uiso(H) = 1.2Ueq(C,N) or 1.5Ueq(O).

Figures

Fig. 1.
The molecular structure of (I), with displacement ellipsoids drawn at the 30% probability level. The dashed lines indicate hydrogen bonds.
Fig. 2.
The infinite chains structure formed via hydrogen bonds, H atoms have been omitted for clarity. The dashed lines indicate the connections between the donor and acceptor atoms of the hydrogen bonds.

Crystal data

C13H8Cl3N3O2F(000) = 696
Mr = 344.57Dx = 1.627 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 669 reflections
a = 4.892 (1) Åθ = 2.6–18.8°
b = 18.014 (4) ŵ = 0.66 mm1
c = 16.112 (3) ÅT = 298 K
β = 97.90 (3)°Block, light yellow
V = 1406.4 (5) Å30.27 × 0.23 × 0.23 mm
Z = 4

Data collection

Siemens SMART CCD diffractometer2478 independent reflections
Radiation source: fine-focus sealed tube1323 reflections with I > 2σ(I)
graphiteRint = 0.078
[var phi] and ω scansθmax = 25.1°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Siemens, 1996)h = −5→5
Tmin = 0.842, Tmax = 0.864k = −15→21
7275 measured reflectionsl = −19→15

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H-atom parameters constrained
S = 1.01w = 1/[σ2(Fo2) + (0.0343P)2 + 0.2069P] where P = (Fo2 + 2Fc2)/3
2478 reflections(Δ/σ)max = 0.001
191 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = −0.40 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.3842 (2)0.62724 (6)0.45177 (7)0.0534 (3)
Cl21.2166 (3)0.50424 (7)0.65897 (7)0.0651 (4)
Cl31.2331 (3)1.28010 (7)0.69130 (8)0.0698 (4)
N10.9665 (7)0.8466 (2)0.6071 (2)0.0471 (9)
N21.0608 (7)0.91708 (18)0.6266 (2)0.0474 (9)
H21.23180.92610.64370.057*
O10.6119 (6)0.76626 (15)0.51866 (18)0.0542 (8)
H10.68000.80460.53970.081*
O20.6214 (6)0.95721 (16)0.59872 (19)0.0619 (9)
C11.0059 (8)0.7165 (2)0.6081 (2)0.0408 (10)
C20.7633 (8)0.7076 (2)0.5502 (2)0.0399 (10)
C30.6750 (8)0.6374 (2)0.5262 (2)0.0411 (11)
C40.8115 (8)0.5751 (2)0.5595 (3)0.0455 (11)
H40.74790.52800.54280.055*
C51.0456 (9)0.5834 (2)0.6182 (3)0.0461 (11)
C61.1444 (9)0.6532 (2)0.6417 (3)0.0450 (11)
H61.30360.65810.68010.054*
C71.1106 (9)0.7906 (3)0.6314 (2)0.0452 (11)
H71.28170.79640.66390.054*
C80.8673 (9)0.9716 (2)0.6171 (3)0.0450 (11)
C90.9672 (8)1.0483 (2)0.6324 (3)0.0410 (10)
C100.8110 (9)1.1062 (2)0.5936 (3)0.0506 (12)
H100.65191.09620.55660.061*
C110.8935 (9)1.1786 (3)0.6102 (3)0.0543 (12)
H110.79491.21830.58420.065*
C121.1270 (9)1.1895 (2)0.6666 (3)0.0477 (12)
N31.2807 (7)1.1365 (2)0.7059 (2)0.0502 (10)
C131.1988 (9)1.0670 (2)0.6874 (3)0.0493 (11)
H131.30511.02850.71330.059*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0452 (7)0.0496 (7)0.0632 (8)−0.0075 (6)0.0002 (5)−0.0027 (6)
Cl20.0715 (9)0.0529 (8)0.0676 (8)0.0141 (7)−0.0015 (6)0.0027 (6)
Cl30.0842 (10)0.0520 (8)0.0722 (9)−0.0184 (7)0.0071 (7)−0.0060 (7)
N10.040 (2)0.040 (2)0.062 (3)−0.0058 (19)0.0091 (18)−0.0038 (19)
N20.036 (2)0.037 (2)0.067 (3)−0.0058 (19)−0.0010 (18)−0.0074 (19)
O10.0454 (19)0.045 (2)0.069 (2)−0.0041 (16)−0.0032 (15)−0.0010 (16)
O20.0317 (19)0.060 (2)0.092 (2)−0.0082 (16)0.0027 (16)−0.0115 (18)
C10.030 (2)0.045 (3)0.048 (3)−0.004 (2)0.010 (2)−0.005 (2)
C20.034 (3)0.035 (3)0.050 (3)−0.002 (2)0.005 (2)−0.001 (2)
C30.030 (2)0.049 (3)0.043 (3)−0.002 (2)0.0032 (19)0.000 (2)
C40.048 (3)0.038 (3)0.053 (3)−0.005 (2)0.016 (2)−0.003 (2)
C50.048 (3)0.047 (3)0.044 (3)0.006 (2)0.010 (2)0.002 (2)
C60.041 (3)0.049 (3)0.045 (3)0.005 (2)0.007 (2)−0.004 (2)
C70.035 (3)0.053 (3)0.048 (3)−0.007 (2)0.006 (2)−0.008 (2)
C80.040 (3)0.046 (3)0.049 (3)−0.008 (2)0.006 (2)−0.005 (2)
C90.033 (3)0.041 (3)0.049 (3)−0.005 (2)0.006 (2)−0.005 (2)
C100.041 (3)0.053 (3)0.055 (3)−0.008 (2)−0.001 (2)−0.001 (2)
C110.053 (3)0.048 (3)0.061 (3)−0.003 (2)0.003 (2)0.006 (2)
C120.052 (3)0.046 (3)0.047 (3)−0.015 (2)0.013 (2)−0.001 (2)
N30.043 (2)0.048 (3)0.057 (2)−0.004 (2)−0.0001 (18)−0.006 (2)
C130.043 (3)0.044 (3)0.061 (3)−0.002 (2)0.004 (2)−0.006 (2)

Geometric parameters (Å, °)

Cl1—C31.739 (4)C4—C51.389 (5)
Cl2—C51.736 (4)C4—H40.9300
Cl3—C121.742 (4)C5—C61.382 (5)
N1—C71.263 (5)C6—H60.9300
N1—N21.372 (4)C7—H70.9300
N2—C81.358 (5)C8—C91.474 (5)
N2—H20.8600C9—C131.380 (5)
O1—C21.349 (4)C9—C101.391 (5)
O1—H10.8200C10—C111.380 (6)
O2—C81.227 (5)C10—H100.9300
C1—C61.396 (5)C11—C121.373 (6)
C1—C21.414 (5)C11—H110.9300
C1—C71.460 (5)C12—N31.321 (5)
C2—C31.375 (5)N3—C131.337 (5)
C3—C41.376 (5)C13—H130.9300
C7—N1—N2120.9 (4)N1—C7—C1119.3 (4)
C8—N2—N1115.9 (4)N1—C7—H7120.3
C8—N2—H2122.1C1—C7—H7120.3
N1—N2—H2122.1O2—C8—N2121.3 (4)
C2—O1—H1109.5O2—C8—C9122.0 (4)
C6—C1—C2118.8 (4)N2—C8—C9116.7 (4)
C6—C1—C7120.8 (4)C13—C9—C10117.2 (4)
C2—C1—C7120.4 (4)C13—C9—C8124.0 (4)
O1—C2—C3118.6 (4)C10—C9—C8118.6 (4)
O1—C2—C1121.8 (4)C11—C10—C9119.6 (4)
C3—C2—C1119.5 (4)C11—C10—H10120.2
C2—C3—C4121.5 (4)C9—C10—H10120.2
C2—C3—Cl1119.1 (3)C12—C11—C10117.3 (4)
C4—C3—Cl1119.4 (3)C12—C11—H11121.4
C3—C4—C5119.3 (4)C10—C11—H11121.4
C3—C4—H4120.4N3—C12—C11125.5 (4)
C5—C4—H4120.4N3—C12—Cl3115.8 (3)
C6—C5—C4120.6 (4)C11—C12—Cl3118.7 (4)
C6—C5—Cl2120.8 (4)C12—N3—C13115.9 (4)
C4—C5—Cl2118.6 (3)N3—C13—C9124.5 (4)
C5—C6—C1120.3 (4)N3—C13—H13117.7
C5—C6—H6119.9C9—C13—H13117.7
C1—C6—H6119.9

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2···O2i0.862.202.930 (4)142
O1—H1···N10.821.822.540 (4)147

Symmetry codes: (i) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2920).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Fan, Y. H., He, X. T., Bi, C. F., Guo, F., Bao, Y. & Chen, R. (2007). Russ. J. Coord. Chem.33, 535–538.
  • Kim, H.-J., Kim, W., Lough, A. J., Kim, B. M. & Chin, J. (2005). J. Am. Chem. Soc.127, 16776–16777. [PubMed]
  • Ren, S., Wang, R., Komatsu, K., Bonaz-Krause, P., Zyrianov, Y., McKenna, C. E., Csipke, C., Tokes, Z. A. & Lien, E. J. (2002). J. Med. Chem.45, 410–419. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siemens (1996). SMART, SAINT and SADABS Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  • Takeuchi, T., Bottcher, A., Quezada, C. M., Simon, M. I., Meade, T. J. & Gray, H. B. (1998). J. Am. Chem. Soc.120 . 8555–8556.
  • Zhi, F. (2008). Acta Cryst. E64, o150. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography