PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 April 1; 65(Pt 4): o873.
Published online 2009 March 25. doi:  10.1107/S1600536809010319
PMCID: PMC2968869

3-[(3,5-Dichloro­anilino)carbon­yl]propionic acid

Abstract

In the crystal structure of the title compound, C10H9Cl2NO3, the conformations of the amide O atom and the carbonyl O atom of the acid segment are anti to the H atoms of the adjacent –CH2 groups. The C=O and O—H bonds of the acid group are in relatively rare anti positions with respect to each other. This is an obvious consequence of the concerted effects of both the all-anti mol­ecular conformation and the intermolecular hydrogen bond donated to the amide carbonyl group. In the crystal, mol­ecules are packed into infinite chains through inter­molecular N—H(...)O and O—H(...)O hydrogen bonds.

Related literature

For the effect of ring and side-chain substitutions on the structures of amide compounds, see: Gowda et al. (2009 [triangle]). For the packing of mol­ecules involving dimeric hydrogen-bonded association of each carboxyl group with a centrosymmetrically related neighbor, see: Jagannathan et al. (1994 [triangle]). For the various modes of inter­linking carboxylic acids by hydrogen bonds, see: Leiserowitz (1976 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o873-scheme1.jpg

Experimental

Crystal data

  • C10H9Cl2NO3
  • M r = 262.08
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o873-efi1.jpg
  • a = 7.350 (1) Å
  • b = 10.318 (2) Å
  • c = 15.031 (3) Å
  • β = 99.44 (2)°
  • V = 1124.5 (3) Å3
  • Z = 4
  • Cu Kα radiation
  • μ = 5.15 mm−1
  • T = 299 K
  • 0.48 × 0.30 × 0.28 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: ψ scan (North et al., 1968 [triangle]) T min = 0.142, T max = 0.242
  • 4204 measured reflections
  • 2005 independent reflections
  • 1794 reflections with I > 2σ(I)
  • R int = 0.111
  • 3 standard reflections frequency: 120 min intensity decay: 1.0%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.058
  • wR(F 2) = 0.170
  • S = 1.13
  • 2005 reflections
  • 151 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.37 e Å−3
  • Δρmin = −0.54 e Å−3

Data collection: CAD-4-PC (Enraf–Nonius, 1996 [triangle]); cell refinement: CAD-4-PC; data reduction: REDU4 (Stoe & Cie, 1987 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809010319/cs2111sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809010319/cs2111Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for extensions of his research fellowship.

supplementary crystallographic information

Comment

The amide moiety is an important constituent of many biologically significant compounds. As a part of studying the effect of ring and side chain substitutions on the structures of this class of compounds (Gowda et al., 2009), we have determined the crystal structure of N-(3,5-dichlorophenyl)-succinamic acid (N35DCPSA, systematic name: 3-[(3,5-dichloro)-aminocarbonyl]propionic acid). The conformations of N—H and C=O bonds in the amide segment of the structure are anti to each other and those of the amide O atom and the carbonyl O atom of the acid segment are also anti to the H atoms attached to the adjacent C atoms (Fig.1). Further, C=O and O—H bonds of the acid group are anti to each other, contrary to the more general syn conformation observed for C=O and O—H bonds of the acid group e.g. N-(2,6-dimethylphenyl)- succinamic acid (N26DMPSA, Gowda et al., 2009). The various modes of interlinking carboxylic acids by hydrogen bonds is described elsewhere (Leiserowitz, 1976). The packing of molecules involving dimeric hydrogen bonded association of each carboxyl group with a centrosymmetrically related neighbor has also been observed (Jagannathan et al., 1994). In the present study, the rare anti conformation of the C=O and O—H bonds of the acid group has been observed. The torsional angles of the groups, C2—C1—N1—C7, C6—C1—N1—C7, C1—N1—C7—C8, C1—N1—C7—O1, N1—C7—C8—C9, C7—C8—C9—C10, O1—C7—C8—C9, C8—C9—C10—O2 and C8—C9—C10—O3 in the side chain of N35DCPSA are -180.0 (3)°, -1.3 (4)°, -174.4 (3)°, 4.3 (5)°, 178.9 (2)°, -175.5 (2)°, 0.4 (2)°, 175.0 (3)° and -5.3 (5)°, respectively, compared to the corresponding values of 114.1 (2)°, -66.5 (2)°, -176.2 (1)°, 2.0 (3)°, -145.4 (2)°, -175.5 (1)°, 36.3 (2)°, -161.1 (2)° and 19.1 (3)°, respectively, for N26DMPSA. The N—H···O and O—H···O intermolecular hydrogen bonds pack the molecules into infinite chains in the structure (Table 1, Fig.2).

Experimental

The solution of succinic anhydride (0.025 mol) in toluene (25 ml) was treated dropwise with the solution of 3,5-dichloroaniline (0.025 mol) also in toluene (20 ml) with constant stirring. The resulting mixture was stirred for about one hour and set aside for an additional hour at room temperature for the completion of reaction. The mixture was then treated with dilute hydrochloric acid to remove the unreacted 3,5-dichloroaniline. The resultant solid N-(3,5-dichlorophenyl)-succinamic acid was filtered under suction and washed thoroughly with water to remove the unreacted succinic anhydride and succinic acid. It was recrystallized to constant melting point from ethanol. The purity of the compound was checked by elemental analysis and characterized by its infrared and NMR spectra. The single crystals used in X-ray diffraction studies were grown in an ethanol solution by slow evaporation at room temperature.

Refinement

The N-bound and O-bound H atoms were located in a difference map. The position of the N-bound H atom was refined with N—H = 0.95 (4) Å and that of the O—H was refined with a distance restrained to 0.82 (2) Å. The other H atoms were positioned with idealized geometry using a riding model [C—H = 0.93–0.97Å]. All H atoms were treated with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

Figures

Fig. 1.
Molecular structure of the title molecule with atom labeling. Displacement ellipsoids are at the 50% probability level, H atoms represented as small spheres of arbitrary radii.
Fig. 2.
Molecular packing detail in the title crystal with hydrogen bonds shown as dashed lines.

Crystal data

C10H9Cl2NO3F(000) = 536
Mr = 262.08Dx = 1.548 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54180 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 7.350 (1) Åθ = 7.4–20.6°
b = 10.318 (2) ŵ = 5.15 mm1
c = 15.031 (3) ÅT = 299 K
β = 99.44 (2)°Prism, colourless
V = 1124.5 (3) Å30.48 × 0.30 × 0.28 mm
Z = 4

Data collection

Enraf–Nonius CAD-4 diffractometer1794 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.111
graphiteθmax = 67.1°, θmin = 5.2°
ω/2θ scansh = 0→8
Absorption correction: ψ scan (North et al., 1968)k = −12→12
Tmin = 0.142, Tmax = 0.242l = −17→17
4204 measured reflections3 standard reflections every 120 min
2005 independent reflections intensity decay: 1.0%

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.170H atoms treated by a mixture of independent and constrained refinement
S = 1.13w = 1/[σ2(Fo2) + (0.0804P)2 + 0.4071P] where P = (Fo2 + 2Fc2)/3
2005 reflections(Δ/σ)max = 0.009
151 parametersΔρmax = 0.37 e Å3
1 restraintΔρmin = −0.54 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.2687 (3)0.5234 (3)0.51327 (16)0.0360 (6)
C20.1971 (3)0.4036 (3)0.48363 (18)0.0390 (6)
H20.16680.38630.42230.047*
C30.1715 (4)0.3108 (3)0.54585 (19)0.0415 (6)
C40.2153 (4)0.3313 (3)0.63743 (19)0.0453 (7)
H40.19710.26760.67890.054*
C50.2872 (4)0.4502 (4)0.66443 (18)0.0453 (7)
C60.3155 (4)0.5480 (3)0.60551 (17)0.0435 (7)
H60.36420.62760.62660.052*
C70.3499 (3)0.7371 (3)0.45487 (16)0.0374 (6)
C80.3313 (4)0.8125 (3)0.36730 (17)0.0421 (7)
H8A0.39960.76850.32630.051*
H8B0.20250.81480.33950.051*
C90.4014 (4)0.9480 (3)0.38180 (17)0.0447 (7)
H9A0.53220.94510.40550.054*
H9B0.34000.98910.42680.054*
C100.3724 (4)1.0293 (3)0.29825 (18)0.0436 (7)
N10.2863 (3)0.6158 (3)0.44600 (15)0.0403 (6)
H1N0.242 (4)0.584 (4)0.387 (3)0.048*
O10.4152 (3)0.7867 (3)0.52683 (13)0.0543 (6)
O20.4186 (4)1.1531 (3)0.30787 (14)0.0622 (7)
H2O0.459 (5)1.167 (5)0.3609 (15)0.075*
O30.3114 (4)0.9893 (3)0.22424 (13)0.0620 (7)
Cl10.07961 (12)0.16217 (8)0.50728 (6)0.0580 (3)
Cl20.34909 (13)0.47994 (11)0.77952 (5)0.0696 (4)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0448 (12)0.0368 (17)0.0252 (12)0.0015 (11)0.0026 (9)0.0014 (11)
C20.0487 (13)0.0390 (17)0.0287 (12)0.0004 (12)0.0050 (10)−0.0022 (11)
C30.0490 (13)0.0379 (17)0.0382 (14)−0.0009 (12)0.0089 (10)−0.0034 (12)
C40.0589 (16)0.044 (2)0.0339 (14)−0.0048 (13)0.0098 (11)0.0050 (12)
C50.0585 (15)0.051 (2)0.0265 (13)−0.0048 (13)0.0071 (10)0.0019 (12)
C60.0590 (15)0.0454 (19)0.0254 (13)−0.0089 (13)0.0044 (10)−0.0008 (12)
C70.0463 (12)0.0401 (17)0.0242 (11)−0.0013 (12)0.0007 (9)0.0008 (11)
C80.0598 (15)0.0408 (17)0.0237 (12)−0.0014 (13)0.0007 (10)0.0025 (11)
C90.0643 (15)0.0440 (19)0.0230 (12)−0.0036 (14)−0.0009 (10)0.0038 (12)
C100.0611 (15)0.0426 (18)0.0252 (12)−0.0021 (13)0.0012 (10)0.0043 (12)
N10.0602 (12)0.0370 (15)0.0220 (10)−0.0033 (11)0.0019 (8)−0.0001 (9)
O10.0824 (13)0.0483 (15)0.0272 (10)−0.0156 (11)−0.0056 (9)0.0019 (9)
O20.1047 (17)0.0458 (15)0.0289 (11)−0.0123 (13)−0.0107 (10)0.0092 (10)
O30.1032 (17)0.0545 (16)0.0224 (10)−0.0094 (13)−0.0071 (10)0.0031 (9)
Cl10.0808 (6)0.0403 (6)0.0533 (5)−0.0134 (4)0.0127 (4)−0.0065 (3)
Cl20.1032 (7)0.0795 (8)0.0243 (4)−0.0260 (5)0.0056 (4)0.0014 (3)

Geometric parameters (Å, °)

C1—C21.388 (4)C7—N11.335 (4)
C1—C61.396 (4)C7—C81.516 (4)
C1—N11.411 (4)C8—C91.494 (5)
C2—C31.372 (4)C8—H8A0.97
C2—H20.93C8—H8B0.97
C3—C41.378 (4)C9—C101.496 (4)
C3—Cl11.737 (3)C9—H9A0.97
C4—C51.371 (5)C9—H9B0.97
C4—H40.93C10—O31.202 (4)
C5—C61.381 (4)C10—O21.323 (4)
C5—Cl21.742 (3)N1—H1N0.95 (4)
C6—H60.93O2—H2O0.82 (2)
C7—O11.221 (3)
C2—C1—C6120.0 (3)N1—C7—C8114.5 (2)
C2—C1—N1116.5 (2)C9—C8—C7112.0 (2)
C6—C1—N1123.5 (3)C9—C8—H8A109
C3—C2—C1119.3 (2)C7—C8—H8A109
C3—C2—H2120.3C9—C8—H8B109
C1—C2—H2120.3C7—C8—H8B109
C2—C3—C4122.6 (3)H8A—C8—H8B108
C2—C3—Cl1118.5 (2)C8—C9—C10113.8 (2)
C4—C3—Cl1118.9 (2)C8—C9—H9A109
C5—C4—C3116.7 (3)C10—C9—H9A109
C5—C4—H4121.7C8—C9—H9B109
C3—C4—H4121.7C10—C9—H9B109
C4—C5—C6123.7 (3)H9A—C9—H9B108
C4—C5—Cl2118.5 (2)O3—C10—O2118.8 (3)
C6—C5—Cl2117.8 (3)O3—C10—C9124.4 (3)
C5—C6—C1117.7 (3)O2—C10—C9116.8 (3)
C5—C6—H6121.1C7—N1—C1129.3 (2)
C1—C6—H6121.1C7—N1—H1N118 (2)
O1—C7—N1124.2 (3)C1—N1—H1N112 (2)
O1—C7—C8121.3 (3)C10—O2—H2O109 (3)
O1—C7—C8—C90.2 (4)O1—C7—N1—C14.3 (5)
N1—C7—C8—C9178.9 (2)C8—C7—N1—C1−174.4 (3)
C7—C8—C9—C10−175.5 (2)C2—C1—N1—C7180.0 (3)
C8—C9—C10—O3−5.3 (5)C6—C1—N1—C71.3 (4)
C8—C9—C10—O2175.0 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1N···O3i0.95 (4)1.93 (4)2.857 (3)167 (3)
O2—H2O···O1ii0.82 (2)1.85 (2)2.656 (3)170 (4)

Symmetry codes: (i) −x+1/2, y−1/2, −z+1/2; (ii) −x+1, −y+2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CS2111).

References

  • Enraf–Nonius (1996). CAD-4-PC Enraf–Nonius, Delft, The Netherlands.
  • Gowda, B. T., Foro, S., Saraswathi, B. S., Terao, H. & Fuess, H. (2009). Acta Cryst. E65, o466. [PMC free article] [PubMed]
  • Jagannathan, N. R., Rajan, S. S. & Subramanian, E. (1994). J. Chem. Crystallogr.24, 75–78.
  • Leiserowitz, L. (1976). Acta Cryst. B32, 775–802.
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Stoe & Cie (1987). REDU4 Stoe & Cie GmbH, Darmstadt, Germany.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography