PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 April 1; 65(Pt 4): o823.
Published online 2009 March 25. doi:  10.1107/S1600536809009672
PMCID: PMC2968864

1,3-Dibenz­yloxy-5-(bromo­meth­yl)benzene

Abstract

In the title compound, C21H19BrO2, the dihedral angles between the central benzene ring and the two peripheral rings are 50.28 (5) and 69.75 (2)°. The O—CH2 bonds lie in the plane of the central ring and adopt a synanti conformation.

Related literature

For related compounds, see: Pan et al. (2005 [triangle]); Xiao et al. (2007 [triangle]); For the synthesis, see: Hawker & Fréchet (1990 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o823-scheme1.jpg

Experimental

Crystal data

  • C21H19BrO2
  • M r = 383.27
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o823-efi1.jpg
  • a = 4.4449 (17) Å
  • b = 11.982 (5) Å
  • c = 16.726 (6) Å
  • α = 86.834 (7)°
  • β = 87.509 (7)°
  • γ = 86.524 (7)°
  • V = 887.1 (6) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 2.33 mm−1
  • T = 298 K
  • 0.20 × 0.15 × 0.10 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003 [triangle]) T min = 0.653, T max = 0.801
  • 4223 measured reflections
  • 3030 independent reflections
  • 2199 reflections with I > 2σ(I)
  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037
  • wR(F 2) = 0.090
  • S = 1.02
  • 3030 reflections
  • 217 parameters
  • H-atom parameters constrained
  • Δρmax = 0.38 e Å−3
  • Δρmin = −0.40 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT-Plus (Bruker, 2001 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXL97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: XP in SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: XP in SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809009672/hg2488sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809009672/hg2488Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by Shandong Province (2007BS02016) and the Key Subject Research Foundation of Shandong Province (XTD 0705).

supplementary crystallographic information

Comment

The chemistry and physics of dendritic compounds started a decade ago. Today, this science of uniquely shaped molecules, namely, dendrite-shaped molecules, is one of the most exciting topics of contemporary interdisciplinary research. As a part of our structural investigations on dendritic macromolecules, the single-crystal X-ray diffraction study on the title compound was carried out. The compound crystallizes in the triclinic system with a P-1 space group. In the title compound, the O—CH2 bonds lie in the plane of the central phenyl ring and adopt a syn, anti conformation. Comparatively, the O—CH2 bonds adopt a syn,syn conformation in the structure of other analogues reported. (Pan et al.2005, Xiao et al.2007) The dihedral angles between the central benzene ring and the two peripheral ones are 50.28 (5)°, 69.75 (2)° respectively. Although structure of the title compound is similiar to those reported, the dihedral angles in different compounds are sgnificantly different.(Xiao et al.2007)

Experimental

(3,5-Bis-benzyloxy-phenyl)-methanol (4.89 g, 15 mmol) was prepared by treatment with CBr4 (6.23 g, 18.75 mmol) and triphenylphosphine(4.92 g, 18.75 mmol) in THF(85 ml) for 15 min at room temperature. Conventional workup and purification with silica-gel column chromatography (eluent: chloroform) gave 5.8 g of1,3-Bis-benzyloxy-5-bromomethyl-benzene (65%) as a colorless needles (Hawker & Fréchet, 1990). Single crystals suitable for X-ray study were grown by diffusion method[dichloromethane/n-hexane (1:6, V/V)] at room temperature.

Refinement

All H-atoms bound to carbon were refined using a riding model with distance C—H = 0.93 Å, Uiso = 1.2Ueq (C) for aromatic atoms and C—H = 0.97 Å, Uiso = 1.2Ueq (C) for methylene atoms.

Figures

Fig. 1.
The molecular structure, with atom labels and 25% probability displacement ellipsoids for non-H atoms.

Crystal data

C21H19BrO2Z = 2
Mr = 383.27F(000) = 392
Triclinic, P1Dx = 1.435 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 4.4449 (17) ÅCell parameters from 1804 reflections
b = 11.982 (5) Åθ = 2.4–25.7°
c = 16.726 (6) ŵ = 2.33 mm1
α = 86.834 (7)°T = 298 K
β = 87.509 (7)°Needle, colorless
γ = 86.524 (7)°0.20 × 0.15 × 0.10 mm
V = 887.1 (6) Å3

Data collection

Bruker APEXII CCD area-detector diffractometer3030 independent reflections
Radiation source: fine-focus sealed tube2199 reflections with I > 2σ(I)
graphiteRint = 0.023
Detector resolution: 0 pixels mm-1θmax = 25.0°, θmin = 2.2°
[var phi] and ω scansh = −5→5
Absorption correction: multi-scan (SADABS; Sheldrick, 2003)k = −13→14
Tmin = 0.653, Tmax = 0.801l = −19→16
4223 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H-atom parameters constrained
S = 1.02w = 1/[σ2(Fo2) + (0.0439P)2] where P = (Fo2 + 2Fc2)/3
3030 reflections(Δ/σ)max = 0.001
217 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = −0.40 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br11.29871 (8)0.68293 (3)0.023543 (18)0.07695 (18)
O10.8518 (4)0.63235 (14)0.34038 (10)0.0550 (5)
O20.9591 (4)0.27865 (14)0.22300 (11)0.0564 (5)
C190.7393 (9)−0.1122 (3)0.2047 (3)0.0876 (12)
H190.6533−0.18100.21290.105*
C50.9054 (6)0.4506 (2)0.28173 (14)0.0425 (6)
H50.77380.41870.32000.051*
C120.4165 (10)0.8523 (4)0.5579 (2)0.0898 (12)
H120.36210.90990.59170.108*
C61.0397 (6)0.3871 (2)0.22160 (15)0.0428 (6)
C21.2996 (5)0.5448 (2)0.16780 (14)0.0402 (6)
C40.9692 (6)0.5614 (2)0.28420 (14)0.0422 (6)
C90.5721 (6)0.6814 (2)0.45747 (15)0.0467 (6)
C160.9864 (6)0.0932 (2)0.18116 (17)0.0502 (7)
C71.2350 (6)0.4338 (2)0.16442 (14)0.0425 (6)
H71.32230.39080.12400.051*
C31.1667 (6)0.6085 (2)0.22694 (14)0.0427 (6)
H31.20890.68340.22870.051*
C100.3915 (7)0.7726 (3)0.43176 (19)0.0670 (9)
H100.31940.77610.38030.080*
C80.6577 (6)0.5895 (2)0.40320 (15)0.0493 (7)
H8A0.76060.52750.43260.059*
H8B0.47890.56270.38120.059*
C170.9854 (8)0.0362 (3)0.2548 (2)0.0673 (9)
H171.06930.06770.29760.081*
C151.1188 (7)0.2048 (2)0.16995 (17)0.0560 (7)
H15A1.33110.19810.18180.067*
H15B1.10040.23360.11490.067*
C180.8630 (9)−0.0662 (3)0.2663 (2)0.0809 (10)
H180.8654−0.10370.31650.097*
C140.6715 (8)0.6790 (3)0.53462 (17)0.0669 (8)
H140.79480.61840.55310.080*
C130.5932 (10)0.7634 (3)0.5845 (2)0.0875 (12)
H130.66110.75970.63640.105*
C110.3172 (9)0.8579 (3)0.4810 (2)0.0894 (11)
H110.19900.91990.46260.107*
C11.5149 (6)0.5949 (2)0.10714 (15)0.0523 (7)
H1A1.64080.53580.08310.063*
H1B1.64490.64260.13330.063*
C200.7390 (10)−0.0585 (3)0.1296 (3)0.0965 (13)
H200.6564−0.09090.08700.116*
C210.8642 (9)0.0451 (3)0.1187 (2)0.0784 (10)
H210.86490.08210.06830.094*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.0785 (3)0.0946 (3)0.0517 (2)0.01328 (19)0.01038 (15)0.02101 (17)
O10.0725 (13)0.0473 (11)0.0460 (11)−0.0111 (10)0.0159 (9)−0.0164 (9)
O20.0716 (13)0.0400 (11)0.0572 (12)−0.0051 (9)0.0170 (10)−0.0124 (9)
C190.083 (3)0.052 (2)0.129 (4)−0.0135 (19)0.010 (2)−0.024 (2)
C50.0473 (16)0.0435 (15)0.0366 (14)−0.0023 (12)0.0006 (11)−0.0030 (11)
C120.108 (3)0.085 (3)0.080 (3)−0.019 (2)0.034 (2)−0.050 (2)
C60.0455 (15)0.0430 (16)0.0404 (14)0.0007 (12)−0.0035 (12)−0.0077 (12)
C20.0348 (14)0.0499 (16)0.0364 (13)−0.0010 (12)−0.0070 (11)−0.0034 (12)
C40.0452 (15)0.0466 (16)0.0353 (13)0.0001 (12)−0.0032 (11)−0.0088 (12)
C90.0504 (17)0.0514 (16)0.0380 (14)−0.0055 (13)0.0068 (12)−0.0046 (12)
C160.0511 (17)0.0415 (16)0.0582 (18)0.0036 (13)0.0017 (13)−0.0140 (14)
C70.0461 (16)0.0450 (16)0.0363 (14)0.0047 (12)−0.0003 (11)−0.0096 (11)
C30.0459 (15)0.0436 (15)0.0392 (14)−0.0052 (12)−0.0025 (12)−0.0053 (12)
C100.071 (2)0.071 (2)0.0597 (19)0.0100 (18)−0.0068 (16)−0.0173 (17)
C80.0568 (18)0.0486 (16)0.0419 (15)−0.0026 (14)0.0053 (13)−0.0030 (12)
C170.081 (2)0.058 (2)0.065 (2)−0.0096 (17)−0.0008 (17)−0.0114 (16)
C150.0654 (19)0.0506 (17)0.0520 (17)−0.0011 (15)0.0092 (14)−0.0154 (14)
C180.095 (3)0.060 (2)0.086 (3)−0.003 (2)0.010 (2)−0.004 (2)
C140.090 (2)0.065 (2)0.0463 (17)−0.0059 (17)−0.0089 (15)−0.0032 (15)
C130.130 (3)0.091 (3)0.0449 (19)−0.025 (3)0.004 (2)−0.019 (2)
C110.096 (3)0.069 (2)0.102 (3)0.019 (2)0.007 (2)−0.029 (2)
C10.0479 (17)0.0649 (18)0.0443 (15)−0.0028 (14)−0.0011 (12)−0.0059 (14)
C200.108 (3)0.074 (3)0.115 (4)−0.012 (2)−0.026 (3)−0.045 (3)
C210.100 (3)0.063 (2)0.075 (2)0.004 (2)−0.0199 (19)−0.0196 (18)

Geometric parameters (Å, °)

Br1—C11.955 (3)C16—C171.374 (4)
O1—C41.368 (3)C16—C151.493 (4)
O1—C81.424 (3)C7—H70.9300
O2—C61.368 (3)C3—H30.9300
O2—C151.425 (3)C10—C111.364 (4)
C19—C181.348 (5)C10—H100.9300
C19—C201.379 (6)C8—H8A0.9700
C19—H190.9300C8—H8B0.9700
C5—C41.377 (4)C17—C181.372 (5)
C5—C61.387 (3)C17—H170.9300
C5—H50.9300C15—H15A0.9700
C12—C131.352 (5)C15—H15B0.9700
C12—C111.375 (5)C18—H180.9300
C12—H120.9300C14—C131.365 (4)
C6—C71.381 (4)C14—H140.9300
C2—C31.374 (3)C13—H130.9300
C2—C71.383 (4)C11—H110.9300
C2—C11.491 (4)C1—H1A0.9700
C4—C31.391 (4)C1—H1B0.9700
C9—C101.376 (4)C20—C211.390 (5)
C9—C141.380 (4)C20—H200.9300
C9—C81.487 (3)C21—H210.9300
C16—C211.368 (4)
C4—O1—C8118.8 (2)C9—C8—H8A110.1
C6—O2—C15118.0 (2)O1—C8—H8B110.1
C18—C19—C20120.7 (4)C9—C8—H8B110.1
C18—C19—H19119.7H8A—C8—H8B108.4
C20—C19—H19119.7C18—C17—C16121.3 (3)
C4—C5—C6119.3 (3)C18—C17—H17119.3
C4—C5—H5120.4C16—C17—H17119.3
C6—C5—H5120.4O2—C15—C16108.0 (2)
C13—C12—C11120.1 (3)O2—C15—H15A110.1
C13—C12—H12119.9C16—C15—H15A110.1
C11—C12—H12119.9O2—C15—H15B110.1
O2—C6—C7123.9 (2)C16—C15—H15B110.1
O2—C6—C5115.2 (2)H15A—C15—H15B108.4
C7—C6—C5120.8 (2)C19—C18—C17119.8 (4)
C3—C2—C7120.1 (2)C19—C18—H18120.1
C3—C2—C1120.2 (2)C17—C18—H18120.1
C7—C2—C1119.7 (2)C13—C14—C9121.6 (3)
O1—C4—C5124.8 (2)C13—C14—H14119.2
O1—C4—C3115.2 (2)C9—C14—H14119.2
C5—C4—C3120.1 (2)C12—C13—C14119.6 (3)
C10—C9—C14117.8 (3)C12—C13—H13120.2
C10—C9—C8120.6 (2)C14—C13—H13120.2
C14—C9—C8121.6 (3)C10—C11—C12120.2 (4)
C21—C16—C17118.5 (3)C10—C11—H11119.9
C21—C16—C15121.0 (3)C12—C11—H11119.9
C17—C16—C15120.5 (3)C2—C1—Br1110.84 (18)
C6—C7—C2119.5 (2)C2—C1—H1A109.5
C6—C7—H7120.3Br1—C1—H1A109.5
C2—C7—H7120.3C2—C1—H1B109.5
C2—C3—C4120.2 (2)Br1—C1—H1B109.5
C2—C3—H3119.9H1A—C1—H1B108.1
C4—C3—H3119.9C19—C20—C21118.9 (4)
C11—C10—C9120.7 (3)C19—C20—H20120.5
C11—C10—H10119.7C21—C20—H20120.5
C9—C10—H10119.7C16—C21—C20120.7 (4)
O1—C8—C9108.1 (2)C16—C21—H21119.6
O1—C8—H8A110.1C20—C21—H21119.6

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2488).

References

  • Bruker (2001). SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2004). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  • Hawker, C. J. & Fréchet, J. M. (1990). J. Am. Chem. Soc.112, 7638–7647.
  • Pan, Z.-G., Cheung, E. Y., Harris, K. D. M., Constable, E. C. & Housecroft, C. E. (2005). Cryst. Growth Des.5, 2084–2090.
  • Sheldrick, G. M. (2003). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Xiao, Z.-P., Fang, R.-Q., Shi, L., Ding, H., Chen, X. & Zhu, H.-L. (2007). Can. J. Chem.85, 951–957.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography