PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 April 1; 65(Pt 4): o765–o766.
Published online 2009 March 14. doi:  10.1107/S1600536809006990
PMCID: PMC2968853

4-Amino­pyridinium hydrogen succinate

Abstract

In the title salt, C5H7N2 +·C4H5O4 , the asymmetric unit comprises an amino­pyridinium cation and a hydrogen succinate anion as protonation of the aromatic N atom of the 4-amino­pyridine mol­ecule has occurred. The crystal packing is stabilized by inter­molecular O—H(...)O and N—H(...)O hydrogen bonds that lead to a two-dimensional array. Short C—H(...)O contacts are also present.

Related literature

For the biological activity of 4-amino­pyridine, see: Judge & Bever (2006 [triangle]); Schwid et al. (1997 [triangle]); Strupp et al. (2004 [triangle]). For the applications of succinic acid, see: Sauer et al. (2008 [triangle]); Song & Lee (2006 [triangle]); Zeikus et al. (1999 [triangle]). For related structures, see: Chao & Schempp (1977 [triangle]); Anderson et al. (2005 [triangle]); Bhattacharya et al. (1994 [triangle]); Karle et al. (2003 [triangle]); Gopalan et al. (2000 [triangle]); Leviel et al., (1981 [triangle]). For stability of the temperature controller, see: Cosier & Glazer (1986 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o765-scheme1.jpg

Experimental

Crystal data

  • C5H7N2 +·C4H5O4
  • M r = 212.21
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o765-efi1.jpg
  • a = 6.5443 (3) Å
  • b = 22.2867 (11) Å
  • c = 7.1112 (4) Å
  • β = 114.587 (4)°
  • V = 943.13 (8) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.12 mm−1
  • T = 100 K
  • 0.38 × 0.14 × 0.08 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.956, T max = 0.991
  • 7174 measured reflections
  • 2176 independent reflections
  • 1483 reflections with I > 2σ(I)
  • R int = 0.066

Refinement

  • R[F 2 > 2σ(F 2)] = 0.062
  • wR(F 2) = 0.150
  • S = 1.06
  • 2176 reflections
  • 148 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.44 e Å−3
  • Δρmin = −0.46 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT (Bruker, 2005 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809006990/tk2378sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809006990/tk2378Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

HKF and SRJ thank the Malaysian Government and Universiti Sains Malaysia for Science Fund grant No. 305/PFIZIK/613312. SRJ thanks Universiti Sains Malaysia for a post–doctoral research fellowship. HKF also thanks Universiti Sains Malaysia for the Research University Golden Goose grant No.1001/PFIZIK/811012.

supplementary crystallographic information

Comment

4-Aminopyridine (Fampridine) is used clinically in Lambert-Eaton myasthenic syndrome and multiple sclerosis because by blocking potassium channels it prolongs action potentials thereby increasing transmitter release at the neuromuscular junction (Judge & Bever, (2006); Schwid et al., 1997; Strupp et al., 2004). The structure of 4-aminopyridine has been reported (Chao & Schempp, 1977) as has a redetermination (Anderson et al., 2005). Succinic acid is a dicarboxylic acid and is a precursor for many chemicals of industrial importance (Zeikus et al., 1999; Song & Lee, 2006). Succinic acid derivatives are mostly being used in chemicals, food and pharmaceuticals (Sauer et al., 2008). The crystal structure of succinic acid has also been reported (Gopalan et al., 2000; Leviel et al., 1981). As an extension of our systematic study of hydrogen bonding patterns of 4-aminopyridine with carboxylic acids, the title compound (I) has been synthesized and the crystal structure determined.

The asymmetric unit of (I) (Fig. 1) contains a 4-aminopyridinium cation and a succinic acetate anion, indicating that proton transfer occurred during the co-crystallisation experiment. Protonation leads to the widening of C2–N2–C3 angle in the pyridine ring to 120.7 (2)°, compared to 115.25 (13)° in 4-aminopyridine (Anderson et al., 2005). This type of protonation has been observed in various 4-aminopyridine acid complexes (Bhattacharya et al., 1994; Karle et al., 2003). Otherwise, the bond lengths and bond angles in 4-aminopyridinium cation are comparable to the values reported earlier for 4-aminopyridine (Chao & Schempp, 1977; Anderson et al., 2005). The 4-aminopyridine ring is essentially planar with the maximum deviation from planarity being -0.011 (3) Å for atom C5. The bond lengths and bond angles of the succinic acetate are found to have normal values (Gopalan et al., 2000; Leviel et al., 1981).

The crystal packing is consolidated by O—H···O and N—H···O intermolecular hydrogen bonds (Table 1) supported by C—H···O contacts. An intramolecular N—H···O hydrogen bond stabilises the conformation of the molecule. The molecules aggregate to form a 2-D array parallel to the ab-plane (Fig. 2).

Experimental

Equimolar quantities of 4-aminopyridine (0.094 g, 1 mmol) and succinic acid (0.118 g, 1 mmol) were dissolved in ethanol (10 ml) and water (10 ml), respectively. The aqueous solution of succinic acid was added drop wise to the solution of 4-aminopyridine and stirred well for 4 h. The solution is refluxed at 343°K for 6 h. Colourless crystals were harvested after one month of solvent evaporation.

Refinement

The N-bound H atoms were located from the Fourier map and are allowed to refine freely (N-H = 0.85 - 0.94 (3) Å). The O-bound H atom was located from the Fourier map and fixed in that position, with O—H = 1.09 Å, and allowed to refine with Uiso(H) = 1.2Ueq(O). All other H atoms were placed in calculated positions, with C—H = 0.93 — 0.97 Å, and refined using a riding model with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The molecular structure of (I), showing 50% probability displacement ellipsoids and the atom numbering scheme. The dashed line indicates hydrogen bonding.
Fig. 2.
A 2-D supramolecular layer in (I), viewed along the c axis. Dashed lines indicate the hydrogen bonding.

Crystal data

C5H7N2+·C4H5O4F(000) = 448
Mr = 212.21Dx = 1.494 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1804 reflections
a = 6.5443 (3) Åθ = 3.4–30.1°
b = 22.2867 (11) ŵ = 0.12 mm1
c = 7.1112 (4) ÅT = 100 K
β = 114.587 (4)°Plate, colourless
V = 943.13 (8) Å30.38 × 0.14 × 0.08 mm
Z = 4

Data collection

Bruker SMART APEXII CCD area-detector diffractometer2176 independent reflections
Radiation source: fine-focus sealed tube1483 reflections with I > 2σ(I)
graphiteRint = 0.066
[var phi] and ω scansθmax = 27.5°, θmin = 3.3°
Absorption correction: multi-scan (SADABS; Bruker, 2005)h = −8→8
Tmin = 0.956, Tmax = 0.991k = −28→28
7174 measured reflectionsl = −9→8

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.150H atoms treated by a mixture of independent and constrained refinement
S = 1.06w = 1/[σ2(Fo2) + (0.0786P)2] where P = (Fo2 + 2Fc2)/3
2176 reflections(Δ/σ)max = 0.001
148 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = −0.46 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O1−0.1281 (3)0.19522 (7)0.2994 (3)0.0174 (4)
O2−0.4204 (3)0.24560 (7)0.2995 (3)0.0153 (4)
O30.4285 (3)0.34855 (7)0.2828 (3)0.0176 (4)
O40.1374 (3)0.40250 (7)0.2633 (3)0.0189 (4)
N1−0.2764 (4)0.44695 (9)0.2808 (3)0.0171 (5)
N2−0.4551 (3)0.62442 (9)0.2152 (3)0.0151 (5)
C1−0.5396 (4)0.52400 (10)0.2605 (4)0.0151 (5)
H1A−0.63690.49620.27690.018*
C2−0.5929 (4)0.58295 (10)0.2401 (4)0.0155 (5)
H2A−0.72720.59530.24320.019*
C3−0.2614 (4)0.60783 (10)0.2064 (4)0.0156 (5)
H3A−0.17010.63680.18640.019*
C4−0.1974 (4)0.54940 (10)0.2261 (4)0.0159 (5)
H4A−0.06320.53870.21950.019*
C5−0.3347 (4)0.50458 (10)0.2570 (4)0.0132 (5)
C6−0.2223 (4)0.24291 (10)0.3003 (4)0.0124 (5)
C7−0.1087 (4)0.30270 (9)0.3032 (4)0.0119 (5)
H7A−0.20010.32510.17980.014*
H7B−0.10020.32570.42200.014*
C80.1262 (4)0.29562 (10)0.3127 (4)0.0124 (5)
H8A0.22300.27860.44580.015*
H8B0.12060.26740.20670.015*
C90.2288 (4)0.35388 (10)0.2832 (4)0.0136 (5)
H1O30.49010.30320.28380.016*
H1N1−0.378 (4)0.4190 (13)0.292 (4)0.020 (7)*
H1N2−0.490 (5)0.6636 (14)0.204 (4)0.027 (8)*
H2N1−0.155 (5)0.4361 (11)0.273 (4)0.013 (6)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0163 (9)0.0058 (8)0.0317 (11)−0.0004 (6)0.0114 (8)−0.0008 (7)
O20.0120 (8)0.0061 (8)0.0294 (11)−0.0011 (6)0.0102 (8)0.0000 (6)
O30.0139 (9)0.0067 (8)0.0366 (12)0.0003 (6)0.0149 (8)0.0014 (7)
O40.0182 (9)0.0057 (8)0.0358 (12)0.0021 (6)0.0141 (8)0.0021 (7)
N10.0141 (10)0.0079 (10)0.0326 (14)0.0014 (8)0.0131 (10)0.0008 (8)
N20.0170 (11)0.0035 (10)0.0235 (13)0.0024 (7)0.0071 (9)0.0001 (8)
C10.0144 (12)0.0104 (12)0.0225 (15)−0.0008 (8)0.0096 (11)0.0020 (9)
C20.0142 (12)0.0092 (12)0.0240 (15)0.0000 (8)0.0089 (11)0.0002 (9)
C30.0139 (12)0.0131 (12)0.0204 (14)−0.0026 (9)0.0076 (11)0.0010 (10)
C40.0125 (12)0.0111 (12)0.0255 (15)−0.0021 (8)0.0093 (11)−0.0014 (9)
C50.0147 (11)0.0092 (11)0.0137 (13)−0.0011 (8)0.0038 (10)−0.0012 (9)
C60.0128 (11)0.0082 (11)0.0162 (14)−0.0009 (8)0.0060 (10)0.0000 (9)
C70.0117 (11)0.0067 (11)0.0175 (14)0.0002 (8)0.0063 (10)0.0005 (9)
C80.0115 (11)0.0063 (11)0.0205 (14)−0.0005 (8)0.0076 (10)0.0004 (9)
C90.0122 (11)0.0107 (12)0.0195 (14)−0.0002 (8)0.0081 (11)−0.0001 (9)

Geometric parameters (Å, °)

O1—C61.230 (3)C1—H1A0.9300
O2—C61.295 (3)C2—H2A0.9300
O3—C91.313 (3)C3—C41.357 (3)
O3—H1O31.0871C3—H3A0.9300
O4—C91.217 (3)C4—C51.420 (3)
N1—C51.331 (3)C4—H4A0.9300
N1—H1N10.94 (3)C6—C71.522 (3)
N1—H2N10.86 (3)C7—C81.519 (3)
N2—C31.347 (3)C7—H7A0.9700
N2—C21.354 (3)C7—H7B0.9700
N2—H1N20.90 (3)C8—C91.516 (3)
C1—C21.352 (3)C8—H8A0.9700
C1—C51.419 (3)C8—H8B0.9700
C9—O3—H1O3116.8N1—C5—C4122.1 (2)
C5—N1—H1N1118.3 (16)C1—C5—C4116.8 (2)
C5—N1—H2N1119.4 (17)O1—C6—O2122.88 (19)
H1N1—N1—H2N1122 (2)O1—C6—C7120.88 (19)
C3—N2—C2120.7 (2)O2—C6—C7116.24 (18)
C3—N2—H1N2118.4 (17)C8—C7—C6112.93 (18)
C2—N2—H1N2120.9 (17)C8—C7—H7A109.0
C2—C1—C5119.9 (2)C6—C7—H7A109.0
C2—C1—H1A120.1C8—C7—H7B109.0
C5—C1—H1A120.1C6—C7—H7B109.0
C1—C2—N2121.4 (2)H7A—C7—H7B107.8
C1—C2—H2A119.3C9—C8—C7113.79 (18)
N2—C2—H2A119.3C9—C8—H8A108.8
N2—C3—C4121.0 (2)C7—C8—H8A108.8
N2—C3—H3A119.5C9—C8—H8B108.8
C4—C3—H3A119.5C7—C8—H8B108.8
C3—C4—C5120.2 (2)H8A—C8—H8B107.7
C3—C4—H4A119.9O4—C9—O3121.5 (2)
C5—C4—H4A119.9O4—C9—C8123.62 (19)
N1—C5—C1121.0 (2)O3—C9—C8114.91 (18)
C5—C1—C2—N20.3 (4)C3—C4—C5—C11.5 (4)
C3—N2—C2—C11.2 (4)O1—C6—C7—C8−2.1 (3)
C2—N2—C3—C4−1.3 (4)O2—C6—C7—C8177.7 (2)
N2—C3—C4—C5−0.1 (4)C6—C7—C8—C9171.3 (2)
C2—C1—C5—N1178.7 (2)C7—C8—C9—O43.3 (3)
C2—C1—C5—C4−1.6 (4)C7—C8—C9—O3−177.5 (2)
C3—C4—C5—N1−178.8 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O3—H1O3···O2i1.091.402.482 (2)176
N1—H1N1···O3ii0.94 (3)2.00 (3)2.926 (3)168 (3)
N2—H1N2···O1iii0.90 (3)2.59 (3)3.115 (3)118 (3)
N2—H1N2···O2iii0.90 (3)1.92 (3)2.810 (3)174 (3)
N1—H2N1···O40.85 (3)2.08 (3)2.934 (3)175 (2)
C1—H1A···O4ii0.932.543.440 (3)164
C2—H2A···O1iii0.932.393.041 (3)127
C3—H3A···O1iv0.932.313.222 (3)166

Symmetry codes: (i) x+1, y, z; (ii) x−1, y, z; (iii) −x−1, y+1/2, −z+1/2; (iv) −x, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2378).

References

  • Anderson, F. P., Gallagher, J. F., Kenny, P. T. M. & Lough, A. J. (2005). Acta Cryst. E61, o1350–o1353.
  • Bhattacharya, S., Dastidar, P. & Guru Row, T. N. (1994). Chem. Mater.6, 531–537.
  • Bruker (2005). APEX2, SAINT and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chao, M. & Schempp, E. (1977). Acta Cryst. B33, 1557–1564.
  • Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  • Gopalan, R. S., Kumaradhas, P., Kulkarani, G. U. & Rao, C. N. R. (2000). J. Mol. Struct.521, 97–106.
  • Judge, S. & Bever, C. (2006). Pharmacol. Ther.111, 224–259. [PubMed]
  • Karle, I., Gilardi, R. D., Chandrashekhar Rao, Ch., Muraleedharan, K. M. & Ranganathan, S. (2003). J. Chem. Crystallogr.33, 727–749.
  • Leviel, J.-L., Auvert, G. & Savariault, J.-M. (1981). Acta Cryst. B37, 2185–2189.
  • Sauer, M., Porro, D., Mattanovich, D. & Branduaradi, P. (2008). Trends Biotechnol.26, 100–108. [PubMed]
  • Schwid, S. B., Petrie, M. D., McDermott, M. P., Tierney, D. S., Mason, D. H. & Goodman, A. D. (1997). Neurology, 48, 817–821. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Song, H. & Lee, S. Y. (2006). Enzyme Microb. Technol.39, 352–361.
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Strupp, M., Kalla, R., Dichgans, M., Fraitinger, T., Glasauer, S. & Brandt, T. (2004). Neurology, 62, 1623–1625. [PubMed]
  • Zeikus, J. G., Jain, M. K. & Elankovan, P. (1999). Appl. Microbiol. Biotechnol.51, 545–552.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography