PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 April 1; 65(Pt 4): o878.
Published online 2009 March 28. doi:  10.1107/S1600536809010381
PMCID: PMC2968849

Isobutyl 3,5-dinitro­benzoate

Abstract

In the structure of the title compound, C11H12N2O6, the mol­ecules are stacked along the b axis without any π–π inter­actions. The stacked columns are linked together by non-classical inter­molecular C—H(...)O inter­actions,. In the molecule, the nitro groups make dihedral angles of 9.4 (5) and 10.3 (5)° with the benzene ring.

Related literature

For the properties and applications of dinitro­benzoate derivatives, see: Huang et al. (2004 [triangle]); Kagitani et al. (1984 [triangle]); Olive (1979 [triangle]). For the anti-creatinine effects of a series of 3,5-dinitro­benzoic acid esters, see: Yu & Yang (2002 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o878-scheme1.jpg

Experimental

Crystal data

  • C11H12N2O6
  • M r = 268.23
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o878-efi1.jpg
  • a = 16.666 (3) Å
  • b = 4.776 (1) Å
  • c = 16.678 (3) Å
  • β = 110.30 (3)°
  • V = 1245.1 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.12 mm−1
  • T = 293 K
  • 0.30 × 0.20 × 0.10 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: ψ scan (North et al., 1968 [triangle]) T min = 0.965, T max = 0.988
  • 2348 measured reflections
  • 2266 independent reflections
  • 1402 reflections with I > 2σ(I)
  • R int = 0.061
  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.069
  • wR(F 2) = 0.225
  • S = 1.11
  • 2266 reflections
  • 172 parameters
  • H-atom parameters constrained
  • Δρmax = 0.25 e Å−3
  • Δρmin = −0.30 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989 [triangle]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo,1995 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809010381/pv2148sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809010381/pv2148Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge financial support from Jiangsu Institute of Nuclear Medicine.

supplementary crystallographic information

Comment

Due to their biological activities, dinitrobenzoate derivatives are widely used in pharmacology. Dinitrobenzoic acid derivatives are effective in tumour treatment as radiation sensitizers (Kagitani et al., 1984). Moreover, some synthetic dinitrobenzoate compounds have shown useful properties in DNA and oligosaccharide synthesis (Olive, 1979; Huang et al., 2004). Furthermore, a series of 3,5-dinitrobenzoic acid esters has also been synthesized and their anti-creatinine effects have been studied (Yu & Yang, 2002). To study their structures and activities, we report here the crystal structure of the title compound, (I).

The bond lengths and angles in (I) (Fig. 1) are within expected ranges (Allen et al., 1987). The two nitro groups are inclined by 9.4 (5) and 169.7 (5)° to the benzene ring, respectively. Except for atoms C1 and C2, the other non-H atoms of the molecule lie in a plane. In the crystal structure, the molecules are stacked along the b axis, without any π-π interaction. The stacked columns are linked together by non-classical intermolecular interactions of the type C—H···O, details have been given in Table 1.

Experimental

3,5-Dinitrobenzoylchloride (5200 mg, 23 mmol) was added in iso-butanol (25 ml, 271 mmol) and the mixture was refluxed for 4 h. White product appeared after cooling to room temperature. They were separated and washed with cold water. Single crystals of the title compound were grown by slow evaporation of a methanol solution: colourless needle-shaped crystals were formed after several days.

Refinement

Positional parameters of all the H atoms bonded to C atoms were calculated geometrically and were allowed to ride on the C atoms to which they are bonded, with C—H distances of 0.93 Å(aromatic), 0.98 Å(CH), 0.97 Å(CH2) and 0.96 Å(CH3); Uiso(H) = 1.2Ueq(C) for the aromatic H, CH and CH2; Uiso(H) = 1.5Ueq(C) for CH3.

Figures

Fig. 1.
A view of the title compound with the atomic numbering scheme. Displacement ellipsoids were drawn at the 30% probability level.

Crystal data

C11H12N2O6F(000) = 560
Mr = 268.23Dx = 1.431 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 16.666 (3) Åθ = 9–12°
b = 4.776 (1) ŵ = 0.12 mm1
c = 16.678 (3) ÅT = 293 K
β = 110.30 (3)°Needle, colourless
V = 1245.1 (5) Å30.30 × 0.20 × 0.10 mm
Z = 4

Data collection

Enraf–Nonius CAD-4 diffractometer1402 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.061
graphiteθmax = 25.3°, θmin = 1.5°
ω/2θ scansh = 0→20
Absorption correction: ψ scan (North et al., 1968)k = 0→5
Tmin = 0.965, Tmax = 0.988l = −20→18
2348 measured reflections3 standard reflections every 200 reflections
2266 independent reflections intensity decay: 1%

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.069Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.225H-atom parameters constrained
S = 1.11w = 1/[σ2(Fo2) + (0.1P)2 + P] where P = (Fo2 + 2Fc2)/3
2266 reflections(Δ/σ)max < 0.001
172 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = −0.30 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O1−0.17180 (16)−0.2811 (6)0.58690 (17)0.0567 (8)
O2−0.08913 (17)−0.4218 (7)0.51387 (18)0.0616 (8)
O3−0.0648 (2)0.3897 (9)0.8166 (2)0.0933 (13)
O40.0522 (2)0.6102 (7)0.8340 (2)0.0767 (10)
O50.23983 (17)0.2979 (6)0.68814 (18)0.0603 (8)
O60.20462 (18)−0.0604 (6)0.60527 (19)0.0637 (9)
N1−0.0004 (2)0.4291 (8)0.8000 (2)0.0542 (9)
N20.18975 (19)0.1116 (7)0.6515 (2)0.0463 (8)
C1−0.2813 (3)−0.6160 (11)0.6546 (3)0.0745 (14)
H1A−0.2346−0.51240.69360.112*
H1B−0.2629−0.80310.64910.112*
H1C−0.3278−0.62240.67610.112*
C2−0.3856 (3)−0.6279 (12)0.5060 (3)0.0864 (17)
H2A−0.4308−0.64440.52890.130*
H2B−0.3680−0.81120.49510.130*
H2C−0.4055−0.52370.45350.130*
C3−0.3102 (3)−0.4769 (9)0.5697 (3)0.0593 (11)
H3A−0.3289−0.28700.57710.071*
C4−0.2420 (3)−0.4536 (10)0.5323 (3)0.0645 (12)
H4A−0.2208−0.63860.52640.077*
H4B−0.2651−0.37020.47590.077*
C5−0.1000 (2)−0.2845 (8)0.5687 (2)0.0418 (8)
C6−0.0337 (2)−0.0901 (7)0.6262 (2)0.0363 (8)
C70.0447 (2)−0.0816 (7)0.6143 (2)0.0388 (8)
H7A0.0553−0.19480.57360.047*
C80.1063 (2)0.0988 (7)0.6641 (2)0.0381 (8)
C90.0934 (2)0.2683 (7)0.7252 (2)0.0406 (8)
H9A0.13560.39010.75780.049*
C100.0157 (2)0.2503 (7)0.7359 (2)0.0407 (8)
C11−0.0482 (2)0.0730 (8)0.6876 (2)0.0430 (9)
H11A−0.10020.06410.69650.052*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0495 (15)0.0679 (19)0.0601 (17)−0.0169 (14)0.0283 (13)−0.0232 (14)
O20.0559 (17)0.070 (2)0.0611 (17)−0.0124 (15)0.0226 (14)−0.0231 (16)
O30.072 (2)0.123 (3)0.096 (3)0.002 (2)0.043 (2)−0.047 (2)
O40.093 (2)0.066 (2)0.070 (2)−0.0068 (19)0.0260 (18)−0.0222 (18)
O50.0550 (16)0.0615 (19)0.0638 (18)−0.0203 (15)0.0200 (14)−0.0124 (15)
O60.0572 (17)0.067 (2)0.075 (2)−0.0002 (15)0.0328 (15)−0.0174 (17)
N10.056 (2)0.053 (2)0.0485 (19)0.0094 (18)0.0128 (16)−0.0119 (17)
N20.0420 (17)0.048 (2)0.0478 (18)0.0002 (15)0.0143 (14)0.0031 (16)
C10.073 (3)0.085 (4)0.069 (3)−0.020 (3)0.029 (2)−0.008 (3)
C20.051 (3)0.100 (4)0.090 (4)−0.023 (3)0.001 (2)0.023 (3)
C30.052 (2)0.054 (3)0.073 (3)−0.004 (2)0.022 (2)0.006 (2)
C40.056 (2)0.081 (3)0.057 (2)−0.024 (2)0.020 (2)−0.020 (2)
C50.048 (2)0.040 (2)0.0394 (19)−0.0065 (17)0.0181 (16)0.0011 (17)
C60.0414 (18)0.0324 (18)0.0320 (17)−0.0024 (15)0.0088 (14)−0.0001 (15)
C70.0446 (19)0.0347 (18)0.0377 (18)0.0001 (16)0.0151 (15)0.0015 (15)
C80.0384 (18)0.0371 (19)0.0378 (18)0.0030 (15)0.0118 (15)0.0040 (15)
C90.047 (2)0.0325 (19)0.0378 (18)−0.0016 (16)0.0091 (15)−0.0001 (15)
C100.0456 (19)0.038 (2)0.0352 (18)0.0048 (16)0.0095 (15)−0.0036 (15)
C110.0422 (19)0.048 (2)0.0387 (18)0.0011 (17)0.0134 (16)0.0060 (17)

Geometric parameters (Å, °)

O1—C51.332 (4)C2—H2C0.9600
O1—C41.462 (5)C3—C41.479 (5)
O2—C51.190 (4)C3—H3A0.9800
O3—N11.213 (4)C4—H4A0.9700
O4—N11.222 (4)C4—H4B0.9700
O5—N21.228 (4)C5—C61.505 (5)
O6—N21.210 (4)C6—C111.373 (5)
N1—C101.463 (5)C6—C71.390 (5)
N2—C81.478 (4)C7—C81.377 (5)
C1—C31.485 (6)C7—H7A0.9300
C1—H1A0.9600C8—C91.375 (5)
C1—H1B0.9600C9—C101.369 (5)
C1—H1C0.9600C9—H9A0.9300
C2—C31.517 (6)C10—C111.381 (5)
C2—H2A0.9600C11—H11A0.9300
C2—H2B0.9600
C5—O1—C4116.0 (3)O1—C4—H4A109.6
O3—N1—O4123.5 (4)C3—C4—H4A109.6
O3—N1—C10118.5 (4)O1—C4—H4B109.6
O4—N1—C10117.9 (3)C3—C4—H4B109.6
O6—N2—O5123.7 (3)H4A—C4—H4B108.1
O6—N2—C8118.3 (3)O2—C5—O1124.8 (3)
O5—N2—C8118.0 (3)O2—C5—C6123.7 (3)
C3—C1—H1A109.5O1—C5—C6111.5 (3)
C3—C1—H1B109.5C11—C6—C7120.5 (3)
H1A—C1—H1B109.5C11—C6—C5123.0 (3)
C3—C1—H1C109.5C7—C6—C5116.5 (3)
H1A—C1—H1C109.5C8—C7—C6118.2 (3)
H1B—C1—H1C109.5C8—C7—H7A120.9
C3—C2—H2A109.5C6—C7—H7A120.9
C3—C2—H2B109.5C7—C8—C9122.7 (3)
H2A—C2—H2B109.5C7—C8—N2118.8 (3)
C3—C2—H2C109.5C9—C8—N2118.6 (3)
H2A—C2—H2C109.5C10—C9—C8117.3 (3)
H2B—C2—H2C109.5C10—C9—H9A121.4
C4—C3—C1113.2 (4)C8—C9—H9A121.4
C4—C3—C2108.1 (4)C9—C10—C11122.3 (3)
C1—C3—C2111.8 (4)C9—C10—N1118.7 (3)
C4—C3—H3A107.9C11—C10—N1119.0 (3)
C1—C3—H3A107.9C6—C11—C10118.9 (3)
C2—C3—H3A107.9C6—C11—H11A120.5
O1—C4—C3110.2 (3)C10—C11—H11A120.5
C5—O1—C4—C3168.4 (4)O6—N2—C8—C9171.3 (3)
C1—C3—C4—O1−62.2 (5)O5—N2—C8—C9−9.2 (5)
C2—C3—C4—O1173.4 (4)C7—C8—C9—C100.6 (5)
C4—O1—C5—O2−2.2 (6)N2—C8—C9—C10−179.5 (3)
C4—O1—C5—C6177.4 (3)C8—C9—C10—C11−0.6 (5)
O2—C5—C6—C11178.1 (4)C8—C9—C10—N1−179.6 (3)
O1—C5—C6—C11−1.5 (5)O3—N1—C10—C9−171.3 (4)
O2—C5—C6—C7−1.8 (5)O4—N1—C10—C98.5 (5)
O1—C5—C6—C7178.6 (3)O3—N1—C10—C119.7 (5)
C11—C6—C7—C8−1.5 (5)O4—N1—C10—C11−170.5 (3)
C5—C6—C7—C8178.4 (3)C7—C6—C11—C101.5 (5)
C6—C7—C8—C90.4 (5)C5—C6—C11—C10−178.4 (3)
C6—C7—C8—N2−179.5 (3)C9—C10—C11—C6−0.4 (5)
O6—N2—C8—C7−8.8 (5)N1—C10—C11—C6178.5 (3)
O5—N2—C8—C7170.7 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C7—H7A···O2i0.932.523.441 (5)168

Symmetry codes: (i) −x, −y−1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2148).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L. A. G., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Enraf–Nonius (1989). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  • Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  • Huang, H. Q., Li, Q., Cai, M. Sh. & Li, Zh. J. (2004). J. Chin. Pharm. Sci.13, 242–244.
  • Kagitani, T., Minagawa, M., Nakahara, Y., Kimura, S., Tsubakimoto, T., Oshiumi, R. & Sakano, K. (1984). Patent Jpn Kokai Tokyo Koho JP 60 258 116.
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  • Olive, P. L. (1979). Br. J. Cancer, 40, 89–93. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Yu, J. G. & Yang, D. Z. (2002). Chin. J. Appl. Chem.19, 858–861.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography