PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 April 1; 65(Pt 4): o875.
Published online 2009 March 28. doi:  10.1107/S1600536809010551
PMCID: PMC2968848

2′-Amino-1′-(4-chloro­phen­yl)-1,7′,7′-trimethyl-2,5′-dioxo-5′,6′,7′,8′-tetra­hydrospiro­[indoline-3,4′(1′H)-quinoline]-3′-carbonitrile dimethyl­formamide solvate dihydrate

Abstract

In the mol­ecule of the title compound, C26H23ClN4O2·C3H7NO·2H2O, the indole and dihydro­pyridine rings are planar and make a dihedral angle of 89.86 (7)°. The dihydro­pyridine ring forms a dihedral angle of 79.95 (7)° with the attached benzene ring. In the crystal structure, inter­molecular N—H(...)O and O—H(...)O hydrogen bonds link the mol­ecules. Intermolecular C—H(...)N and C—H(...)Cl interactions are also present.

Related literature

For the indole nucleus, see: da Silva et al. (2001 [triangle]). For the anti­bacterial and fungicidal activities of indole compounds, see: Joshi & Chand (1982 [triangle]). For spiro­oxindole ring systems in alkaloids, see: Abdel-Rahman et al. (2004 [triangle]). For the preparation of heterocyclic compounds involving indole derivatives, see: Zhu et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o875-scheme1.jpg

Experimental

Crystal data

  • C26H23ClN4O2·C3H7NO·2H2O
  • M r = 568.06
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o875-efi1.jpg
  • a = 9.237 (1) Å
  • b = 12.9553 (17) Å
  • c = 14.4554 (11) Å
  • α = 66.162 (11)°
  • β = 71.619 (12)°
  • γ = 84.595 (15)°
  • V = 1500.5 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.17 mm−1
  • T = 293 K
  • 0.60 × 0.57 × 0.30 mm

Data collection

  • Rigaku Mercury diffractometer
  • Absorption correction: multi-scan (Jacobson, 1998 [triangle]) T min = 0.760, T max = 0.950
  • 14714 measured reflections
  • 5445 independent reflections
  • 4310 reflections with I > 2σ(I)
  • R int = 0.028

Refinement

  • R[F 2 > 2σ(F 2)] = 0.066
  • wR(F 2) = 0.155
  • S = 1.13
  • 5445 reflections
  • 379 parameters
  • 4 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.21 e Å−3
  • Δρmin = −0.31 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2001 [triangle]); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku/MSC, 2004 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEPII (Johnson, 1976 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809010551/bq2126sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809010551/bq2126Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are deeply indebted to Professor S. J. Ji for his invaluable help. This work was partially supported by the Special Foundation of the President of Xuzhou Medical College and by a grant from the Chemistry and Biochemistry Experimental Center of Xuzhou Medical College.

supplementary crystallographic information

Comment

The indole nucleus is the well known heterocyclic compound (da Silva et al., 2001). Compounds carrying the indole moiety exhibit antibacterial and fungicidal activities (Joshi & Chand, 1982). Spirooxindole ring systems are found in a number of alkaloids like horsifiline, spirotryprostatin and elacomine (Abdel-Rahman et al., 2004). As a part of our program devoted to the preparation of heterocyclic compounds involving indole derivatives (Zhu et al., 2007), we have synthesized a series of spirooxindoles via reactions of substituted isatins together with malononitrile and enaminones. We report herein the crystal structure of the title compound, (I).

In the molecule of (I), (Fig. 1), the indole ring A (C3/C12/N2/C13-C18) and the dihydropyridine ring B (N1/C1-C5), are planar. The dihedral angle between them is 89.86 (7)°, and the benzene ring C (C21-C26) is oriented at a dihedral angle of 79.95 (7)° with the attached ring B. Ring D (C1/C2/C6-C9) adopts twisted conformation, with C8 deviating the C1/C2/C6/C7 plan by 0.636 (3)Å.

In the crystal structure, intermolecular N-H···O and O-H···O, hydrogen bonds link the molecules (Fig. 2), in which they may be effective in the stabilization of the structure.

Experimental

Compound (I) was prepared by one-pot reaction of 1-methylisatin (2 mmol), malononitrile (2 mmol) and 3-(4-chlorophenylamino) -5,5-dimethylcyclohex-2-enone (2 mmol) in ethanol. After stirring at 343 K for 5 h, the reaction mixture was cooled and washed with small amount of ethanol. The crude product was filtered and single crystals of the title compound were obtained from DMF and water mixture solution by slow evaporation at room temperature (yield; 80%, m.p. > 573 K). Spectroscopic analysis: IR (KBr, n, cm-1): 3463, 3312, 2190, 1716, 1650, 1568, 1491, 1364, 1090, 1018, 915, 753. 1H NMR (400 MHz, DMSO-d6): 7.65 (d, J = 8.4 Hz, 2H, Ar-H), 7.51-7.54 (m, 2H, ArH), 7.23 (t, J = 8.0 Hz, 2H, ArH), 6.93-6.70 (m, 2H, ArH), 5.55 (s, 2H, NH2), 3.13 (s, 3H, NCH3), 2.05-2.17 (m, 2H, CH2), 1.81-1.93 (m, 2H, CH2), 0.89 (s, 3H, CH3), 0.81 (s, 3H, CH3).

Refinement

H atoms were positioned geometrically, with N-H=0.86Å (for NH) and C-H=0.93Å and 0.97Å for aromatic and methyl H and constrained to ride on their parent atoms with Uiso(H)=xUeq(C,N), where x=1.5 for methyl H and x=1.2 for all other H atoms.

Figures

Fig. 1.
The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. The solvent DMF and the two water molecules are not shown for clarity.
Fig. 2.
A packing diagram of (I). Hydrogen bonds are shown as dashed lines.

Crystal data

C26H23ClN4O2·C3H7NO·2(H2O)Z = 2
Mr = 568.06F(000) = 600
Triclinic, P1Dx = 1.257 Mg m3
Hall symbol: -P 1Melting point > 573 K
a = 9.237 (1) ÅMo Kα radiation, λ = 0.71070 Å
b = 12.9553 (17) ÅCell parameters from 5610 reflections
c = 14.4554 (11) Åθ = 3.0–25.3°
α = 66.162 (11)°µ = 0.17 mm1
β = 71.619 (12)°T = 293 K
γ = 84.595 (15)°Block, colorless
V = 1500.5 (3) Å30.60 × 0.57 × 0.30 mm

Data collection

Rigaku Mercury diffractometer5445 independent reflections
Radiation source: fine-focus sealed tube4310 reflections with I > 2σ(I)
graphiteRint = 0.028
Detector resolution: 7.31 pixels mm-1θmax = 25.4°, θmin = 3.0°
ω scansh = −10→11
Absorption correction: multi-scan (Jacobson, 1998)k = −15→15
Tmin = 0.760, Tmax = 0.950l = −16→17
14714 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.155H atoms treated by a mixture of independent and constrained refinement
S = 1.13w = 1/[σ2(Fo2) + (0.0606P)2 + 0.5335P] where P = (Fo2 + 2Fc2)/3
5445 reflections(Δ/σ)max = 0.001
379 parametersΔρmax = 0.21 e Å3
4 restraintsΔρmin = −0.31 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.98120 (12)1.26623 (8)−0.42483 (7)0.1045 (4)
O10.7477 (2)0.47841 (13)0.12855 (14)0.0562 (5)
O20.9204 (2)0.60921 (17)0.22240 (15)0.0609 (5)
O30.5785 (4)0.07513 (19)0.2612 (2)0.1004 (9)
O40.1363 (4)0.7917 (2)0.0471 (2)0.0956 (8)
H4A0.148 (5)0.772 (4)−0.002 (2)0.115*
H4B0.076 (4)0.747 (3)0.101 (2)0.115*
O50.7925 (3)0.2586 (2)0.1329 (2)0.0918 (8)
H5A0.781 (5)0.317 (2)0.144 (3)0.110*
H5B0.721 (3)0.214 (3)0.176 (3)0.110*
N10.7639 (2)0.87742 (14)−0.01571 (14)0.0364 (4)
N20.6913 (3)0.51570 (16)0.33166 (15)0.0490 (5)
N30.5786 (3)0.79554 (19)0.35627 (18)0.0595 (6)
N40.7018 (2)0.98819 (15)0.08330 (15)0.0436 (5)
H4C0.66810.99670.14240.052*
H4D0.72711.04640.02420.052*
N50.3930 (5)0.0797 (3)0.4056 (3)0.1189 (14)
C10.7780 (2)0.77324 (18)−0.02435 (17)0.0351 (5)
C20.7457 (2)0.67493 (18)0.06225 (17)0.0357 (5)
C30.6836 (2)0.66875 (18)0.17425 (17)0.0361 (5)
C40.6775 (2)0.78666 (18)0.17317 (17)0.0348 (5)
C50.7150 (2)0.88302 (17)0.08337 (17)0.0336 (5)
C60.7733 (3)0.5680 (2)0.04972 (19)0.0422 (6)
C70.8399 (3)0.5698 (2)−0.0597 (2)0.0521 (7)
H7A0.80780.5007−0.06000.063*
H7B0.95040.5711−0.07770.063*
C80.7935 (3)0.6698 (2)−0.1438 (2)0.0499 (6)
C90.8308 (3)0.7769 (2)−0.13491 (18)0.0457 (6)
H9A0.94050.7912−0.16300.055*
H9B0.78450.8399−0.17900.055*
C100.6231 (4)0.6592 (3)−0.1279 (3)0.0723 (9)
H10A0.60320.5937−0.13800.108*
H10B0.59320.7254−0.17850.108*
H10C0.56590.6519−0.05730.108*
C110.8872 (4)0.6759 (3)−0.2544 (2)0.0767 (10)
H11A0.99380.6831−0.26360.115*
H11B0.85850.7402−0.30740.115*
H11C0.86780.6083−0.26140.115*
C120.7833 (3)0.5956 (2)0.24294 (19)0.0439 (6)
C130.5405 (3)0.52001 (19)0.32746 (19)0.0457 (6)
C140.4138 (4)0.4527 (2)0.4012 (2)0.0673 (9)
H140.41990.39400.46360.081*
C150.2771 (4)0.4775 (3)0.3771 (3)0.0768 (10)
H150.19000.43390.42500.092*
C160.2652 (3)0.5628 (3)0.2865 (3)0.0700 (9)
H160.17140.57670.27350.084*
C170.3932 (3)0.6290 (2)0.2137 (2)0.0506 (6)
H170.38660.68740.15120.061*
C180.5295 (3)0.60722 (18)0.23519 (18)0.0387 (5)
C190.7487 (4)0.4264 (3)0.4093 (2)0.0743 (9)
H19A0.75410.35870.39670.111*
H19B0.68140.41310.47920.111*
H19C0.84870.44820.40350.111*
C200.6241 (3)0.79382 (19)0.27326 (19)0.0413 (6)
C210.8148 (2)0.97855 (18)−0.11100 (17)0.0350 (5)
C220.7118 (3)1.04436 (19)−0.15805 (19)0.0432 (6)
H220.60771.0277−0.12540.052*
C230.7629 (3)1.1353 (2)−0.2540 (2)0.0523 (7)
H230.69391.1808−0.28630.063*
C240.9163 (3)1.1575 (2)−0.3009 (2)0.0554 (7)
C251.0204 (3)1.0947 (2)−0.2537 (2)0.0598 (7)
H251.12431.1127−0.28600.072*
C260.9691 (3)1.0041 (2)−0.1572 (2)0.0492 (6)
H261.03820.9607−0.12370.059*
C270.4592 (6)0.0402 (3)0.3331 (3)0.0904 (12)
H270.4101−0.02140.33660.108*
C280.4561 (9)0.1747 (5)0.4057 (5)0.187 (3)
H28A0.56490.17800.37460.280*
H28B0.43220.16860.47740.280*
H28C0.41410.24200.36520.280*
C290.2537 (8)0.0312 (7)0.4884 (5)0.205 (4)
H29A0.2198−0.03180.48060.307*
H29B0.17710.08690.48390.307*
H29C0.27100.00600.55620.307*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.1137 (8)0.0718 (6)0.0595 (5)−0.0027 (5)0.0020 (5)0.0216 (4)
O10.0800 (13)0.0305 (9)0.0487 (11)0.0064 (8)−0.0133 (9)−0.0120 (8)
O20.0489 (11)0.0686 (13)0.0630 (12)0.0095 (9)−0.0250 (9)−0.0194 (10)
O30.158 (3)0.0573 (14)0.0778 (18)−0.0061 (15)−0.0191 (18)−0.0296 (13)
O40.133 (2)0.0648 (15)0.0736 (18)−0.0345 (14)−0.0062 (16)−0.0228 (13)
O50.0887 (18)0.0642 (16)0.126 (2)0.0034 (13)−0.0146 (15)−0.0546 (16)
N10.0479 (11)0.0275 (10)0.0295 (10)−0.0011 (8)−0.0091 (8)−0.0086 (8)
N20.0682 (14)0.0371 (11)0.0335 (11)0.0104 (10)−0.0172 (10)−0.0063 (9)
N30.0835 (17)0.0514 (14)0.0413 (13)0.0010 (11)−0.0124 (12)−0.0209 (11)
N40.0590 (13)0.0328 (10)0.0358 (11)−0.0035 (9)−0.0092 (9)−0.0131 (9)
N50.197 (4)0.101 (3)0.075 (2)0.080 (3)−0.058 (3)−0.055 (2)
C10.0369 (12)0.0329 (12)0.0343 (12)0.0008 (9)−0.0100 (10)−0.0128 (10)
C20.0401 (12)0.0329 (12)0.0333 (12)0.0023 (9)−0.0107 (10)−0.0127 (10)
C30.0401 (12)0.0314 (12)0.0331 (12)−0.0001 (9)−0.0092 (10)−0.0104 (10)
C40.0401 (12)0.0315 (12)0.0311 (12)−0.0018 (9)−0.0082 (9)−0.0121 (10)
C50.0344 (12)0.0301 (11)0.0365 (12)−0.0005 (9)−0.0108 (9)−0.0129 (10)
C60.0507 (14)0.0343 (13)0.0415 (14)0.0059 (10)−0.0147 (11)−0.0153 (11)
C70.0681 (17)0.0425 (14)0.0511 (16)0.0109 (12)−0.0194 (13)−0.0248 (12)
C80.0699 (18)0.0439 (14)0.0421 (14)0.0063 (12)−0.0200 (13)−0.0217 (12)
C90.0588 (15)0.0411 (14)0.0347 (13)0.0019 (11)−0.0113 (11)−0.0147 (11)
C100.081 (2)0.070 (2)0.080 (2)0.0025 (16)−0.0420 (18)−0.0305 (17)
C110.125 (3)0.0619 (19)0.0506 (18)0.0082 (18)−0.0236 (18)−0.0325 (16)
C120.0545 (16)0.0385 (13)0.0375 (13)0.0091 (11)−0.0159 (11)−0.0141 (11)
C130.0562 (16)0.0327 (13)0.0417 (14)−0.0007 (11)−0.0042 (12)−0.0159 (11)
C140.094 (2)0.0401 (15)0.0464 (17)−0.0152 (15)0.0039 (16)−0.0107 (13)
C150.062 (2)0.069 (2)0.085 (2)−0.0284 (17)0.0098 (18)−0.034 (2)
C160.0542 (18)0.068 (2)0.092 (3)−0.0113 (15)−0.0084 (16)−0.043 (2)
C170.0484 (15)0.0431 (14)0.0641 (17)0.0001 (11)−0.0155 (13)−0.0258 (13)
C180.0437 (13)0.0307 (12)0.0382 (13)−0.0026 (10)−0.0060 (10)−0.0143 (10)
C190.109 (3)0.0574 (18)0.0457 (17)0.0280 (17)−0.0305 (17)−0.0095 (14)
C200.0504 (14)0.0316 (12)0.0392 (14)−0.0024 (10)−0.0120 (11)−0.0116 (10)
C210.0405 (13)0.0309 (11)0.0293 (11)−0.0043 (9)−0.0080 (10)−0.0084 (9)
C220.0387 (13)0.0386 (13)0.0454 (14)0.0048 (10)−0.0097 (11)−0.0130 (11)
C230.0582 (17)0.0428 (14)0.0461 (15)0.0105 (12)−0.0186 (13)−0.0079 (12)
C240.0668 (18)0.0381 (14)0.0413 (15)−0.0031 (12)−0.0086 (13)−0.0008 (11)
C250.0456 (15)0.0581 (17)0.0542 (17)−0.0143 (13)−0.0035 (13)−0.0062 (14)
C260.0444 (14)0.0496 (15)0.0467 (15)−0.0026 (11)−0.0168 (12)−0.0091 (12)
C270.144 (4)0.067 (2)0.070 (2)0.030 (2)−0.039 (2)−0.038 (2)
C280.386 (11)0.122 (4)0.147 (5)0.106 (6)−0.168 (6)−0.102 (4)
C290.208 (7)0.245 (8)0.109 (4)0.123 (6)−0.015 (5)−0.068 (5)

Geometric parameters (Å, °)

Cl1—C241.730 (3)C9—H9B0.9700
O1—C61.230 (3)C10—H10A0.9600
O2—C121.219 (3)C10—H10B0.9600
O3—C271.221 (5)C10—H10C0.9600
O4—H4A0.82 (4)C11—H11A0.9600
O4—H4B0.82 (3)C11—H11B0.9600
O5—H5A0.83 (3)C11—H11C0.9600
O5—H5B0.82 (4)C13—C181.383 (3)
N1—C51.389 (3)C13—C141.386 (4)
N1—C11.395 (3)C14—C151.389 (5)
N1—C211.444 (3)C14—H140.9300
N2—C121.357 (3)C15—C161.358 (5)
N2—C131.408 (3)C15—H150.9300
N2—C191.445 (3)C16—C171.385 (4)
N3—C201.148 (3)C16—H160.9300
N4—C51.356 (3)C17—C181.368 (3)
N4—H4C0.8600C17—H170.9300
N4—H4D0.8600C19—H19A0.9600
N5—C271.306 (4)C19—H19B0.9600
N5—C281.410 (7)C19—H19C0.9600
N5—C291.434 (7)C21—C221.372 (3)
C1—C21.351 (3)C21—C261.377 (3)
C1—C91.499 (3)C22—C231.381 (3)
C2—C61.458 (3)C22—H220.9300
C2—C31.508 (3)C23—C241.365 (4)
C3—C181.514 (3)C23—H230.9300
C3—C41.517 (3)C24—C251.367 (4)
C3—C121.544 (3)C25—C261.384 (4)
C4—C51.361 (3)C25—H250.9300
C4—C201.412 (3)C26—H260.9300
C6—C71.497 (3)C27—H270.9300
C7—C81.514 (4)C28—H28A0.9600
C7—H7A0.9700C28—H28B0.9600
C7—H7B0.9700C28—H28C0.9600
C8—C91.524 (3)C29—H29A0.9600
C8—C101.528 (4)C29—H29B0.9600
C8—C111.533 (4)C29—H29C0.9600
C9—H9A0.9700
H4A—O4—H4B110 (4)H11A—C11—H11C109.5
H5A—O5—H5B108 (4)H11B—C11—H11C109.5
C5—N1—C1120.56 (17)O2—C12—N2125.9 (2)
C5—N1—C21120.44 (17)O2—C12—C3125.8 (2)
C1—N1—C21118.74 (18)N2—C12—C3108.3 (2)
C12—N2—C13111.0 (2)C18—C13—C14121.1 (3)
C12—N2—C19123.1 (2)C18—C13—N2110.0 (2)
C13—N2—C19125.0 (2)C14—C13—N2128.9 (3)
C5—N4—H4C120.0C13—C14—C15116.5 (3)
C5—N4—H4D120.0C13—C14—H14121.7
H4C—N4—H4D120.0C15—C14—H14121.7
C27—N5—C28120.9 (5)C16—C15—C14122.9 (3)
C27—N5—C29123.0 (5)C16—C15—H15118.6
C28—N5—C29116.1 (5)C14—C15—H15118.6
C2—C1—N1121.7 (2)C15—C16—C17119.8 (3)
C2—C1—C9122.1 (2)C15—C16—H16120.1
N1—C1—C9116.17 (19)C17—C16—H16120.1
C1—C2—C6119.9 (2)C18—C17—C16118.9 (3)
C1—C2—C3123.27 (19)C18—C17—H17120.6
C6—C2—C3116.87 (19)C16—C17—H17120.6
C2—C3—C18113.90 (18)C17—C18—C13120.9 (2)
C2—C3—C4109.84 (17)C17—C18—C3130.3 (2)
C18—C3—C4110.71 (17)C13—C18—C3108.7 (2)
C2—C3—C12111.04 (18)N2—C19—H19A109.5
C18—C3—C12101.58 (18)N2—C19—H19B109.5
C4—C3—C12109.47 (18)H19A—C19—H19B109.5
C5—C4—C20119.5 (2)N2—C19—H19C109.5
C5—C4—C3124.29 (19)H19A—C19—H19C109.5
C20—C4—C3116.16 (18)H19B—C19—H19C109.5
N4—C5—C4123.7 (2)N3—C20—C4177.4 (2)
N4—C5—N1116.05 (19)C22—C21—C26120.6 (2)
C4—C5—N1120.16 (19)C22—C21—N1120.5 (2)
O1—C6—C2120.0 (2)C26—C21—N1118.8 (2)
O1—C6—C7121.1 (2)C21—C22—C23119.9 (2)
C2—C6—C7118.9 (2)C21—C22—H22120.1
C6—C7—C8113.4 (2)C23—C22—H22120.1
C6—C7—H7A108.9C24—C23—C22119.0 (2)
C8—C7—H7A108.9C24—C23—H23120.5
C6—C7—H7B108.9C22—C23—H23120.5
C8—C7—H7B108.9C23—C24—C25121.9 (2)
H7A—C7—H7B107.7C23—C24—Cl1119.1 (2)
C7—C8—C9108.1 (2)C25—C24—Cl1119.0 (2)
C7—C8—C10110.0 (2)C24—C25—C26119.1 (2)
C9—C8—C10110.9 (2)C24—C25—H25120.5
C7—C8—C11109.8 (2)C26—C25—H25120.5
C9—C8—C11107.8 (2)C21—C26—C25119.5 (2)
C10—C8—C11110.2 (2)C21—C26—H26120.3
C1—C9—C8114.7 (2)C25—C26—H26120.3
C1—C9—H9A108.6O3—C27—N5127.2 (4)
C8—C9—H9A108.6O3—C27—H27116.4
C1—C9—H9B108.6N5—C27—H27116.4
C8—C9—H9B108.6N5—C28—H28A109.5
H9A—C9—H9B107.6N5—C28—H28B109.5
C8—C10—H10A109.5H28A—C28—H28B109.5
C8—C10—H10B109.5N5—C28—H28C109.5
H10A—C10—H10B109.5H28A—C28—H28C109.5
C8—C10—H10C109.5H28B—C28—H28C109.5
H10A—C10—H10C109.5N5—C29—H29A109.5
H10B—C10—H10C109.5N5—C29—H29B109.5
C8—C11—H11A109.5H29A—C29—H29B109.5
C8—C11—H11B109.5N5—C29—H29C109.5
H11A—C11—H11B109.5H29A—C29—H29C109.5
C8—C11—H11C109.5H29B—C29—H29C109.5
C5—N1—C1—C2−0.3 (3)C2—C3—C12—O254.8 (3)
C21—N1—C1—C2173.8 (2)C18—C3—C12—O2176.3 (2)
C5—N1—C1—C9179.7 (2)C4—C3—C12—O2−66.6 (3)
C21—N1—C1—C9−6.2 (3)C2—C3—C12—N2−127.1 (2)
N1—C1—C2—C6−175.3 (2)C18—C3—C12—N2−5.6 (2)
C9—C1—C2—C64.8 (3)C4—C3—C12—N2111.5 (2)
N1—C1—C2—C33.7 (3)C12—N2—C13—C18−1.9 (3)
C9—C1—C2—C3−176.2 (2)C19—N2—C13—C18−171.3 (2)
C1—C2—C3—C18119.9 (2)C12—N2—C13—C14179.3 (2)
C6—C2—C3—C18−61.1 (3)C19—N2—C13—C1410.0 (4)
C1—C2—C3—C4−4.9 (3)C18—C13—C14—C150.2 (4)
C6—C2—C3—C4174.08 (19)N2—C13—C14—C15178.8 (3)
C1—C2—C3—C12−126.2 (2)C13—C14—C15—C160.0 (5)
C6—C2—C3—C1252.9 (3)C14—C15—C16—C170.2 (5)
C2—C3—C4—C53.4 (3)C15—C16—C17—C18−0.4 (4)
C18—C3—C4—C5−123.3 (2)C16—C17—C18—C130.6 (4)
C12—C3—C4—C5125.6 (2)C16—C17—C18—C3−176.1 (2)
C2—C3—C4—C20−178.80 (19)C14—C13—C18—C17−0.5 (4)
C18—C3—C4—C2054.6 (3)N2—C13—C18—C17−179.3 (2)
C12—C3—C4—C20−56.6 (3)C14—C13—C18—C3176.9 (2)
C20—C4—C5—N4−1.2 (3)N2—C13—C18—C3−2.0 (3)
C3—C4—C5—N4176.5 (2)C2—C3—C18—C17−59.0 (3)
C20—C4—C5—N1−178.3 (2)C4—C3—C18—C1765.4 (3)
C3—C4—C5—N1−0.6 (3)C12—C3—C18—C17−178.5 (2)
C1—N1—C5—N4−178.59 (19)C2—C3—C18—C13123.9 (2)
C21—N1—C5—N47.4 (3)C4—C3—C18—C13−111.7 (2)
C1—N1—C5—C4−1.3 (3)C12—C3—C18—C134.5 (2)
C21—N1—C5—C4−175.3 (2)C5—C4—C20—N3163 (6)
C1—C2—C6—O1178.2 (2)C3—C4—C20—N3−15 (6)
C3—C2—C6—O1−0.9 (3)C5—N1—C21—C22−85.8 (3)
C1—C2—C6—C71.1 (3)C1—N1—C21—C22100.1 (3)
C3—C2—C6—C7−178.0 (2)C5—N1—C21—C2698.0 (3)
O1—C6—C7—C8151.3 (2)C1—N1—C21—C26−76.1 (3)
C2—C6—C7—C8−31.7 (3)C26—C21—C22—C231.8 (4)
C6—C7—C8—C953.2 (3)N1—C21—C22—C23−174.4 (2)
C6—C7—C8—C10−68.0 (3)C21—C22—C23—C240.5 (4)
C6—C7—C8—C11170.5 (2)C22—C23—C24—C25−2.4 (4)
C2—C1—C9—C820.2 (3)C22—C23—C24—Cl1176.2 (2)
N1—C1—C9—C8−159.8 (2)C23—C24—C25—C261.9 (4)
C7—C8—C9—C1−47.8 (3)Cl1—C24—C25—C26−176.6 (2)
C10—C8—C9—C172.9 (3)C22—C21—C26—C25−2.2 (4)
C11—C8—C9—C1−166.4 (2)N1—C21—C26—C25174.0 (2)
C13—N2—C12—O2−177.0 (2)C24—C25—C26—C210.4 (4)
C19—N2—C12—O2−7.5 (4)C28—N5—C27—O31.6 (7)
C13—N2—C12—C34.9 (3)C29—N5—C27—O3−178.8 (5)
C19—N2—C12—C3174.4 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C28—H28B···N3i0.962.603.528 (5)163
C15—H15···Cl1ii0.932.743.647 (3)167
N4—H4D···O4iii0.862.232.934 (3)139
N4—H4C···O3iv0.862.243.071 (3)162
O5—H5B···O30.82 (4)2.03 (4)2.830 (4)163 (4)
O5—H5A···O10.83 (3)2.02 (2)2.816 (3)164 (4)
O4—H4B···O2v0.82 (3)2.17 (3)2.974 (3)167 (4)
O4—H4A···O5vi0.82 (4)1.99 (4)2.800 (4)170 (4)

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x−1, y−1, z+1; (iii) −x+1, −y+2, −z; (iv) x, y+1, z; (v) x−1, y, z; (vi) −x+1, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2126).

References

  • Abdel-Rahman, A. H., Keshk, E. M., Hanna, M. A. & El-Bady, Sh. M. (2004). Bioorg. Med. Chem.12, 2483–2488. [PubMed]
  • Jacobson, R. (1998). Private communication to the Rigaku Corporation, Tokyo, Japan.
  • Johnson, C. K. (1976). ORTEPII Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
  • Joshi, K. C. & Chand, P. (1982). Pharmazie, 37, 1–12. [PubMed]
  • Rigaku/MSC (2001). CrystalClear Rigaku/MSC, The Woodlands, Texas, USA.
  • Rigaku/MSC (2004). CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Silva, J. F. M. da, Garden, S. J. & Pinto, A. C. (2001). J. Braz. Chem. Soc.12, 273–324.
  • Zhu, S. L., Ji, S. J. & Zhang, Y. (2007). Tetrahedron, 63, 9365–9372.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography