PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 April 1; 65(Pt 4): o726.
Published online 2009 March 11. doi:  10.1107/S1600536809008101
PMCID: PMC2968847

2-(5-Bromo-3-methyl­sulfinyl-1-benzofuran-2-yl)acetic acid

Abstract

In the title compound, C11H9BrO4S, the O atom and the methyl group of the methyl­sulfinyl substituent lie on opposite sides of the plane of the benzofuran fragment. The crystal structure is stabilized by inter­molecular O—H(...)O and C—H(...)O inter­actions. In addition, the crystal structure exhibits a Br(...)π inter­action of 3.551 (3) Å between the Br atom and the centroid of the benzene ring of an adjacent mol­ecule.

Related literature

For the crystal structures of similar 2-(5-bromo-3-methyl­sulfinyl-1-benzofuran-2-yl)acetic acid derivatives, see: Choi et al. (2008 [triangle], 2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o726-scheme1.jpg

Experimental

Crystal data

  • C11H9BrO4S
  • M r = 317.15
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o726-efi7.jpg
  • a = 7.7646 (7) Å
  • b = 16.304 (2) Å
  • c = 18.993 (2) Å
  • V = 2404.4 (4) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 3.59 mm−1
  • T = 298 K
  • 0.60 × 0.60 × 0.40 mm

Data collection

  • Bruker SMART CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1999 [triangle]) T min = 0.130, T max = 0.233
  • 13628 measured reflections
  • 2621 independent reflections
  • 2033 reflections with I > 2σ(I)
  • R int = 0.030

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036
  • wR(F 2) = 0.094
  • S = 1.05
  • 2621 reflections
  • 160 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.36 e Å−3
  • Δρmin = −0.85 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT (Bruker, 2001 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and DIAMOND (Brandenburg, 1998 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809008101/zl2184sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809008101/zl2184Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

This work is related our previous communications on the synthesis and structure of 2-(5-bromo-3-methylsulfinyl-1-benzofuran-2-yl)acetic acid derivatives, viz. methyl 2-(5-bromo-3-methylsulfinyl-1-benzofuran-2-yl)acetate (Choi et al., 2008) and propyl 2-(5-bromo-3-methylsulfinyl-1-benzofuran-2-yl)acetate (Choi et al., 2009). Here we report the crystal structure of the title compound, 2-(5-bromo-3-methylsulfinyl-1-benzofuran-2-yl)acetic acid (Fig. 1).

The benzofuran unit is essentially planar, with a mean deviation of 0.014 (2) Å from the least-squares plane defined by the nine constituent atoms. The molecular packing (Fig. 2) is stabilized by intermolecular O—H···O and C—H···O hydrogen bonds; one between the H atom of carboxyl group and the O atom of the S═O unit, a second between a benzene—H atom and the S═O unit, a third between a benzene—H atom and the hydroxy group, respectively (Fig. 2 and Table 1; symmetry code as in Fig. 2). Further stability comes from intermolecular C—Br···π interactions between the Br atom and the benzene ring of an adjacent molecule, with a C4—Br···Cgv separation of 3.551 (3) Å (Fig. 2; Cg is the centroid of the C2–C7 benzene ring, symmetry code as in Fig. 2).

Experimental

Ethyl 2-(5-bromo-3-methylsulfinyl-1-benzofuran-2-yl)acetate (276 mg, 0.8 mmol) was added to a solution of potassium hydroxide (180 mg, 3.2 mmol) in water (15 ml) and methanol (15 ml), and the mixture was refluxed for 5 h, then cooled. Water was added, and the solution was extracted with dichloromethane. The aqueous layer was acidified to pH 1 with concentrated hydrochloric acid and then extracted with chloroform, dried over magnesium sulfate, filtered and concentrated under vacuum. The residue was purified by column chromatography (ethanol) to afford the title compound as a colorless solid [yield 81%, m.p. 472–473 K; Rf = 0.36 (ethanol)]. Single crystals suitable for X-ray diffraction were prepared by evaporation of a solution of the title compound in methanol at room temperature. Spectroscopic analysis: 1H NMR (CDCl3, 400 MHz) δ 3.07 (s, 3H), 4.08 (s, 2H), 7.38 (d, J = 8.6 Hz, 1H), 7.43 (dd, J = 8.6 Hz and J = 1.82 Hz, 1H), 7.80 (d, J = 2.2 Hz, 1H), 10.54 (s, 1H); EI—MS 318 [M+2], 316 [M+].

Refinement

Atom H2A of the hydroxy group was found in a difference Fourier map and refined freely. The other H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 Å for aromatic H atoms, 0.97 Å for methylene H atoms and 0.96 Å for methyl H atoms, respectively, and with Uiso(H) = 1.2Ueq(C) for aromatic and methylene H atoms and 1.5Ueq(C) for methyl H atoms.

Figures

Fig. 1.
The molecular structure of the title compound, showing displacement ellipsoids drawn at the 30% probability level.
Fig. 2.
O—H···O, C–H···O and Br···π interactions (dotted lines) in the title compound. Cg denotes the ring centroid. [Symmetry codes: (i) x + 1, y, z; (ii) -x + 1/2, ...

Crystal data

C11H9BrO4SF(000) = 1264
Mr = 317.15Dx = 1.752 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 4375 reflections
a = 7.7646 (7) Åθ = 2.5–26.9°
b = 16.304 (2) ŵ = 3.59 mm1
c = 18.993 (2) ÅT = 298 K
V = 2404.4 (4) Å3Block, colorless
Z = 80.60 × 0.60 × 0.40 mm

Data collection

Bruker SMART CCD diffractometer2621 independent reflections
Radiation source: fine-focus sealed tube2033 reflections with I > 2σ(I)
graphiteRint = 0.030
Detector resolution: 10.0 pixels mm-1θmax = 27.0°, θmin = 2.1°
[var phi] and ω scansh = −9→9
Absorption correction: multi-scan (SADABS; Sheldrick, 1999)k = −17→20
Tmin = 0.130, Tmax = 0.233l = −22→24
13628 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: difference Fourier map
wR(F2) = 0.094H atoms treated by a mixture of independent and constrained refinement
S = 1.05w = 1/[σ2(Fo2) + (0.0414P)2 + 2.2996P] where P = (Fo2 + 2Fc2)/3
2621 reflections(Δ/σ)max = 0.001
160 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = −0.85 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br0.09253 (6)0.55548 (3)0.70463 (2)0.07726 (18)
S0.61529 (8)0.28188 (4)0.61833 (4)0.03288 (16)
O10.7445 (2)0.49916 (11)0.54672 (9)0.0373 (4)
O21.1855 (3)0.32375 (15)0.53576 (12)0.0489 (6)
H2A1.252 (5)0.306 (2)0.5603 (19)0.057 (12)*
O31.0177 (3)0.32808 (17)0.62986 (11)0.0634 (7)
O40.4277 (2)0.26028 (12)0.61107 (13)0.0511 (6)
C10.6340 (3)0.38564 (15)0.59570 (13)0.0296 (5)
C20.5212 (3)0.45323 (15)0.61355 (13)0.0290 (5)
C30.3678 (3)0.46237 (16)0.65037 (14)0.0340 (6)
H30.31260.41790.67110.041*
C40.3016 (4)0.54037 (17)0.65473 (14)0.0380 (6)
C50.3810 (4)0.60866 (17)0.62502 (14)0.0402 (6)
H50.33220.66030.63060.048*
C60.5312 (4)0.60005 (17)0.58753 (15)0.0398 (6)
H60.58570.64460.56670.048*
C70.5968 (3)0.52154 (17)0.58250 (14)0.0328 (5)
C80.7617 (3)0.41652 (16)0.55538 (13)0.0321 (6)
C90.9129 (3)0.37869 (18)0.51972 (15)0.0386 (6)
H9A0.96960.42020.49140.046*
H9B0.87230.33620.48810.046*
C101.0426 (3)0.34198 (16)0.56920 (14)0.0343 (6)
C110.6508 (4)0.2897 (2)0.71079 (15)0.0524 (8)
H11A0.57540.33050.73020.079*
H11B0.76830.30500.71940.079*
H11C0.62780.23770.73260.079*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br0.0694 (3)0.0723 (3)0.0901 (3)0.0299 (2)0.0476 (2)0.0178 (2)
S0.0288 (3)0.0292 (3)0.0406 (4)0.0017 (3)−0.0038 (3)0.0007 (3)
O10.0305 (9)0.0365 (10)0.0447 (10)−0.0004 (8)0.0068 (8)0.0059 (8)
O20.0321 (11)0.0708 (15)0.0437 (12)0.0153 (10)0.0048 (10)0.0039 (11)
O30.0390 (12)0.109 (2)0.0421 (13)0.0163 (13)0.0062 (10)0.0189 (12)
O40.0328 (11)0.0399 (11)0.0808 (16)−0.0076 (9)−0.0157 (10)0.0114 (11)
C10.0264 (12)0.0309 (13)0.0315 (12)−0.0004 (10)−0.0016 (10)−0.0007 (10)
C20.0292 (12)0.0289 (12)0.0288 (12)0.0004 (10)−0.0018 (10)0.0008 (10)
C30.0318 (14)0.0356 (14)0.0346 (14)0.0005 (11)0.0045 (11)0.0029 (11)
C40.0351 (15)0.0472 (17)0.0317 (14)0.0101 (12)0.0068 (11)0.0007 (12)
C50.0464 (16)0.0339 (14)0.0404 (15)0.0110 (12)0.0005 (12)0.0010 (12)
C60.0443 (16)0.0309 (14)0.0443 (16)−0.0001 (12)0.0012 (13)0.0062 (12)
C70.0284 (13)0.0365 (14)0.0334 (13)−0.0001 (11)0.0013 (10)0.0016 (11)
C80.0289 (13)0.0342 (13)0.0333 (14)0.0047 (10)−0.0007 (10)0.0006 (10)
C90.0325 (14)0.0473 (16)0.0360 (14)0.0075 (12)0.0039 (11)0.0009 (12)
C100.0274 (13)0.0380 (14)0.0375 (15)−0.0020 (11)0.0023 (11)−0.0014 (12)
C110.0490 (18)0.068 (2)0.0403 (16)−0.0029 (16)−0.0024 (14)0.0116 (15)

Geometric parameters (Å, °)

Br—C41.896 (3)C3—H30.9300
S—O41.5051 (19)C4—C51.392 (4)
S—C11.752 (3)C5—C61.374 (4)
S—C111.782 (3)C5—H50.9300
O1—C81.364 (3)C6—C71.381 (4)
O1—C71.382 (3)C6—H60.9300
O2—C101.313 (3)C8—C91.490 (3)
O2—H2A0.76 (4)C9—C101.502 (4)
O3—C101.190 (3)C9—H9A0.9700
C1—C81.350 (3)C9—H9B0.9700
C1—C21.448 (3)C11—H11A0.9600
C2—C31.389 (4)C11—H11B0.9600
C2—C71.391 (4)C11—H11C0.9600
C3—C41.374 (4)
O4—S—C1106.49 (12)C7—C6—H6121.8
O4—S—C11104.87 (15)C6—C7—O1125.8 (2)
C1—S—C1199.22 (15)C6—C7—C2123.9 (2)
C8—O1—C7106.42 (19)O1—C7—C2110.4 (2)
C10—O2—H2A112 (3)C1—C8—O1111.4 (2)
C8—C1—C2107.1 (2)C1—C8—C9133.0 (3)
C8—C1—S124.1 (2)O1—C8—C9115.5 (2)
C2—C1—S128.86 (19)C8—C9—C10114.1 (2)
C3—C2—C7119.3 (2)C8—C9—H9A108.7
C3—C2—C1135.9 (2)C10—C9—H9A108.7
C7—C2—C1104.7 (2)C8—C9—H9B108.7
C4—C3—C2116.8 (2)C10—C9—H9B108.7
C4—C3—H3121.6H9A—C9—H9B107.6
C2—C3—H3121.6O3—C10—O2124.3 (3)
C3—C4—C5123.4 (2)O3—C10—C9124.9 (3)
C3—C4—Br118.1 (2)O2—C10—C9110.7 (2)
C5—C4—Br118.6 (2)S—C11—H11A109.5
C6—C5—C4120.3 (3)S—C11—H11B109.5
C6—C5—H5119.9H11A—C11—H11B109.5
C4—C5—H5119.9S—C11—H11C109.5
C5—C6—C7116.4 (3)H11A—C11—H11C109.5
C5—C6—H6121.8H11B—C11—H11C109.5
O4—S—C1—C8−137.7 (2)C8—O1—C7—C6179.9 (3)
C11—S—C1—C8113.7 (2)C8—O1—C7—C2−0.1 (3)
O4—S—C1—C240.9 (3)C3—C2—C7—C62.0 (4)
C11—S—C1—C2−67.7 (3)C1—C2—C7—C6−179.0 (3)
C8—C1—C2—C3177.3 (3)C3—C2—C7—O1−178.1 (2)
S—C1—C2—C3−1.5 (5)C1—C2—C7—O10.9 (3)
C8—C1—C2—C7−1.5 (3)C2—C1—C8—O11.5 (3)
S—C1—C2—C7179.8 (2)S—C1—C8—O1−179.63 (18)
C7—C2—C3—C4−1.2 (4)C2—C1—C8—C9−178.5 (3)
C1—C2—C3—C4−179.8 (3)S—C1—C8—C90.4 (4)
C2—C3—C4—C5−0.6 (4)C7—O1—C8—C1−0.9 (3)
C2—C3—C4—Br−179.94 (19)C7—O1—C8—C9179.1 (2)
C3—C4—C5—C61.7 (4)C1—C8—C9—C10−64.2 (4)
Br—C4—C5—C6−179.0 (2)O1—C8—C9—C10115.8 (3)
C4—C5—C6—C7−0.9 (4)C8—C9—C10—O314.6 (4)
C5—C6—C7—O1179.2 (2)C8—C9—C10—O2−168.3 (2)
C5—C6—C7—C2−0.9 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O2—H2A···O4i0.76 (4)1.83 (4)2.579 (3)174 (4)
C5—H5···O4ii0.932.623.453 (3)150
C6—H6···O2iii0.932.683.444 (4)140

Symmetry codes: (i) x+1, y, z; (ii) −x+1/2, y+1/2, z; (iii) −x+2, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2184).

References

  • Brandenburg, K. (1998). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (2001). SAINT and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  • Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008). Acta Cryst. E64, o2397. [PMC free article] [PubMed]
  • Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2009). Acta Cryst. E65, o520. [PMC free article] [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Sheldrick, G. M. (1999). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography