PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 April 1; 65(Pt 4): m469.
Published online 2009 March 31. doi:  10.1107/S1600536809011179
PMCID: PMC2968844

{2,2′-[4,5-Dibromo-o-phenyl­enebis(nitrilo­dimethyl­idyne)]diphenolato-κ4 O,N,N′,O′}(methanol-κO)copper(II)

Abstract

In the title compound, [Cu(C20H12Br2N2O2)(CH3OH)], the CuII ion, and the C, O and hydr­oxy H atoms of the coordinated methanol mol­ecule are located on a twofold rotation axis, while the methyl H atoms are disordered over two sites about the rotation axis. The CuII ion is coordinated by two N atoms [Cu—N = 1.960 (4) Å] and two O atoms [Cu—O = 1.908 (4) Å] from the tetra­dentate Schiff base ligand and by one O atom [Cu—O = 2.324 (6) Å] of the methanol molecule in a square-pyramidal geometry. In the crystal structure, inter­molecular O—H(...)O hydrogen bonds link complex mol­ecules into extended chains along [001].

Related literature

For a related crystal structure, see Saha et al. (2007 [triangle]). For general background related to Schiff base compounds, see: Ghosh et al. (2006 [triangle]); Nayka et al. (2006 [triangle]); Singh et al. (2007 [triangle]); Yu et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m469-scheme1.jpg

Experimental

Crystal data

  • [Cu(C20H12Br2N2O2)(CH4O)]
  • M r = 567.72
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m469-efi2.jpg
  • a = 19.164 (4) Å
  • b = 19.416 (4) Å
  • c = 5.3287 (10) Å
  • V = 1982.7 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 5.16 mm−1
  • T = 273 K
  • 0.21 × 0.15 × 0.13 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.411, T max = 0.554 (expected range = 0.379–0.511)
  • 9881 measured reflections
  • 2004 independent reflections
  • 1517 reflections with I > 2σ(I)
  • R int = 0.046

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043
  • wR(F 2) = 0.111
  • S = 1.06
  • 2004 reflections
  • 137 parameters
  • 242 restraints
  • H-atom parameters constrained
  • Δρmax = 1.23 e Å−3
  • Δρmin = −1.82 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT-Plus (Bruker, 2001 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809011179/lh2794sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809011179/lh2794Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Schiff-bases have played an important role in the development of coordination chemistry as they readily form stable complexes with most of the transition metals, in which some may exhibit interesting properties (Yu et al., 2007; Ghosh et al., 2006; Singh et al., 2007; Nayka et al., 2006). Here, we report a new Cu(II) complex based on the tetradentate Schiff-base ligand 4,5-dibromo-1,2-diaminobenzene-N,N'-bis (salicylideneimine).

The molecular structure of the title compound is shown in Fig. 1. The CuII ion is pentacoordinated with the four basal sites occupied by two N atoms and two O atoms of the Schiff-base ligand, while the apical site is occupied by the O atom of the coordinated methanol molecule. The CuII ion is displaced towards the Cu—Omethanol bond from the plane formed by the two N atoms and two O atoms by 0.1017 Å,. The coordination geometry of the CuII ion is square-pyramidal. The Cu—N, Cu—O and Cu—Omethanol bond lengths are consistent with the corresponding distances in aqua-(N,N'-ethylenebis(3-methoxysalicylaldiminato)-N,N',\ O,O')copper(II) (Saha, et al., 2007).

Experimental

The Schiff base ligand was synthesized by condensation of 4,5-dibromo-1,2-diaminobenzene and 2-hydroxy-benzaldehyde with the ratio 1:2 in ethanol. The synthesis of the title complex was carried out by reacting Cu(ClO4)2.6H2O, and the schiff-base ligand (1:1, molar ratio) in methanol. After the stirring process was continued for about 10 min at room temperature, the mixture was filtered and the filtrate was allowed to partial evaporate in air for sevral days to produce crystals suitable for X-ray diffraction with a yield about 55%.

Refinement

H atoms were included using the HFIX command in SHELXL-97 (Sheldrick, 2008), with C—H = 0.96 and 0.93 Å; O-H = 0.82Å and were allowed for as riding atoms with Uiso(H) = 1.5Ueq(Cmethyl) and (Uiso(H) = 1.2Ueq(C,O).

Figures

Fig. 1.
The molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. All H-atoms are omitted for clarity. Unlabelled atoms are related by the symmetry operator (x, -y+3/2, z).

Crystal data

[Cu(C20H12Br2N2O2)(CH4O)]F(000) = 1116
Mr = 567.72Dx = 1.902 Mg m3Dm = 1.902 Mg m3Dm measured by not measured
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 1834 reflections
a = 19.164 (4) Åθ = 3.0–22.2°
b = 19.416 (4) ŵ = 5.16 mm1
c = 5.3287 (10) ÅT = 273 K
V = 1982.7 (6) Å3Block, red
Z = 40.21 × 0.15 × 0.13 mm

Data collection

Bruker APEXII CCD area-detector diffractometer2004 independent reflections
Radiation source: fine-focus sealed tube1517 reflections with I > 2σ(I)
graphiteRint = 0.046
[var phi] and ω scansθmax = 26.0°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −23→16
Tmin = 0.411, Tmax = 0.554k = −23→23
9881 measured reflectionsl = −6→6

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H-atom parameters constrained
S = 1.06w = 1/[σ2(Fo2) + (0.0453P)2 + 5.5878P] where P = (Fo2 + 2Fc2)/3
2004 reflections(Δ/σ)max < 0.001
137 parametersΔρmax = 1.23 e Å3
242 restraintsΔρmin = −1.82 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Cu10.12529 (5)0.75001.11061 (15)0.0314 (2)
Br1−0.10466 (3)0.66291 (3)0.15521 (10)0.0450 (2)
O10.1647 (2)0.68206 (19)1.3271 (6)0.0423 (9)
O20.2119 (3)0.75000.8053 (11)0.0547 (10)
H2A0.19900.75000.65870.066*
N10.0729 (2)0.6827 (2)0.9116 (7)0.0301 (9)
C10.0321 (3)0.7138 (3)0.7227 (9)0.0347 (9)
C2−0.0080 (3)0.6782 (3)0.5479 (9)0.0367 (9)
H2−0.00760.63040.54560.044*
C3−0.0485 (3)0.7142 (3)0.3777 (9)0.0327 (10)
C40.0738 (3)0.6172 (3)0.9476 (10)0.0394 (8)
H40.04720.59050.83910.047*
C50.1119 (3)0.5817 (3)1.1386 (9)0.0392 (8)
C60.1546 (3)0.6165 (3)1.3181 (9)0.0397 (9)
C70.1889 (3)0.5735 (3)1.4984 (10)0.0416 (9)
H70.21770.59361.61820.050*
C80.1056 (3)0.5104 (3)1.1487 (10)0.0425 (9)
H80.07720.48891.03080.051*
C90.1388 (3)0.4700 (3)1.3222 (10)0.0441 (10)
H90.13390.42241.32260.053*
C100.1804 (3)0.5040 (3)1.4990 (11)0.0433 (10)
H100.20300.47791.62070.052*
C110.2775 (5)0.75000.8417 (18)0.067 (2)
H11A0.30030.72740.70400.101*0.50
H11B0.28780.72600.99470.101*0.50
H11C0.29380.79660.85390.101*0.50

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.0344 (5)0.0327 (5)0.0269 (4)0.000−0.0054 (4)0.000
Br10.0519 (4)0.0464 (4)0.0369 (3)−0.0063 (3)−0.0153 (2)−0.0044 (2)
O10.053 (2)0.039 (2)0.036 (2)0.0042 (18)−0.0152 (17)0.0006 (16)
O20.048 (2)0.076 (2)0.040 (2)0.000−0.0030 (18)0.000
N10.031 (2)0.032 (2)0.027 (2)0.0034 (18)−0.0029 (17)0.0005 (18)
C10.0348 (17)0.0422 (17)0.0272 (16)0.0003 (15)−0.0009 (15)0.0008 (15)
C20.0377 (19)0.042 (2)0.0308 (18)−0.0010 (17)−0.0037 (17)0.0007 (17)
C30.033 (2)0.040 (2)0.0252 (19)−0.0030 (18)−0.0033 (17)−0.0008 (18)
C40.0398 (16)0.0449 (17)0.0336 (16)0.0007 (15)−0.0047 (14)0.0008 (14)
C50.0406 (17)0.0443 (17)0.0327 (16)0.0021 (15)−0.0034 (15)0.0009 (15)
C60.0397 (17)0.0469 (18)0.0326 (16)0.0026 (16)−0.0015 (15)0.0020 (15)
C70.0446 (19)0.0446 (19)0.0355 (18)0.0035 (18)−0.0059 (17)0.0017 (17)
C80.0452 (18)0.0444 (18)0.0380 (18)0.0005 (17)−0.0052 (16)0.0017 (16)
C90.048 (2)0.044 (2)0.0400 (19)0.0020 (18)−0.0039 (17)0.0039 (17)
C100.047 (2)0.0451 (19)0.0381 (19)0.0044 (18)−0.0044 (17)0.0055 (17)
C110.052 (4)0.090 (4)0.060 (4)0.0000.002 (4)0.000

Geometric parameters (Å, °)

Cu1—O1i1.908 (4)C4—C51.430 (7)
Cu1—O11.908 (3)C4—H40.9300
Cu1—N1i1.960 (4)C5—C81.390 (8)
Cu1—N11.960 (4)C5—C61.429 (7)
Cu1—O22.324 (6)C6—C71.432 (7)
Br1—C31.886 (5)C7—C101.358 (8)
O1—C61.289 (7)C7—H70.9300
O2—C111.271 (9)C8—C91.368 (7)
O2—H2A0.8199C8—H80.9300
N1—C41.285 (7)C9—C101.399 (8)
N1—C11.410 (6)C9—H90.9300
C1—C21.392 (7)C10—H100.9300
C1—C1i1.405 (10)C11—H11A0.9600
C2—C31.383 (7)C11—H11B0.9600
C2—H20.9300C11—H11C0.9600
C3—C3i1.388 (10)
O1i—Cu1—O187.5 (2)N1—C4—H4116.9
O1i—Cu1—N1i93.95 (16)C5—C4—H4116.9
O1—Cu1—N1i172.22 (18)C8—C5—C6119.6 (5)
O1i—Cu1—N1172.22 (18)C8—C5—C4117.7 (5)
O1—Cu1—N193.95 (16)C6—C5—C4122.7 (5)
N1i—Cu1—N183.6 (2)O1—C6—C5125.3 (5)
O1i—Cu1—O298.09 (16)O1—C6—C7118.9 (5)
O1—Cu1—O298.09 (16)C5—C6—C7115.9 (5)
N1i—Cu1—O289.29 (16)C10—C7—C6121.7 (5)
N1—Cu1—O289.29 (16)C10—C7—H7119.1
C6—O1—Cu1127.0 (3)C6—C7—H7119.1
C11—O2—Cu1126.8 (6)C9—C8—C5123.8 (5)
C11—O2—H2A116.4C9—C8—H8118.1
Cu1—O2—H2A116.8C5—C8—H8118.1
C4—N1—C1122.6 (4)C8—C9—C10116.7 (6)
C4—N1—Cu1124.8 (3)C8—C9—H9121.6
C1—N1—Cu1112.6 (3)C10—C9—H9121.6
C2—C1—C1i119.8 (3)C7—C10—C9122.3 (5)
C2—C1—N1124.8 (5)C7—C10—H10119.2
C1i—C1—N1115.4 (3)C9—C10—H10118.5
C3—C2—C1119.9 (5)O2—C11—H11A109.5
C3—C2—H2120.1O2—C11—H11B109.5
C1—C2—H2120.1H11A—C11—H11B109.5
C2—C3—C3i120.3 (3)O2—C11—H11C109.5
C2—C3—Br1117.7 (4)H11A—C11—H11C109.5
C3i—C3—Br1121.90 (15)H11B—C11—H11C109.5
N1—C4—C5126.3 (5)

Symmetry codes: (i) x, −y+3/2, z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O2—H2A···O1ii0.822.303.009 (6)145

Symmetry codes: (ii) x, y, z−1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2794).

References

  • Bruker (2001). SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2004). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  • Ghosh, R., Rahaman, S. H., Lin, C. N., Lu, T. H. & Ghosh, B. K. (2006). Polyhedron, 25, 3104–3112.
  • Nayka, M., Koner, R., Lin, H. H., Flörke, U., Wei, H. H. & Mohanta, S. (2006). Inorg. Chem.45, 10764–10773. [PubMed]
  • Saha, P. K., Dutta, B., Jana, S., Bera, R., Saha, S., Okamoto, K. & Koner, S. (2007). Polyhedron, 26, 563–571.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Singh, K., Barwa, M. S. & Tyagi, P. (2007). Eur. J. Med. Chem.42, 394–402. [PubMed]
  • Yu, T. Z., Zhang, K., Zhao, Y. L., Yang, C. H., Zhang, H., Fan, D. W. & Dong, W. K. (2007). Inorg. Chem. Commun.10, 401–403.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography