PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 April 1; 65(Pt 4): o827.
Published online 2009 March 25. doi:  10.1107/S1600536809009878
PMCID: PMC2968842

2-Ethyl-5-nitro­aniline

Abstract

The mol­ecule of the title compound, C8H10N2O2, is nearly planar [maximum deviation of 0.163 (3) Å for one of the O atoms of the NO2 group]. In the crystal structure, weak inter­molecular N—H(...)N and C—H(...)O hydrogen bonds link the mol­ecules into chains, forming R 2 2(10) ring motifs.

Related literature

For a related structure, see: Corwin (1955 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]). For ring motifs, see: Bernstein et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o827-scheme1.jpg

Experimental

Crystal data

  • C8H10N2O2
  • M r = 166.18
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o827-efi1.jpg
  • a = 23.037 (5) Å
  • b = 3.9540 (8) Å
  • c = 18.393 (4) Å
  • β = 104.51 (3)°
  • V = 1621.9 (6) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 298 K
  • 0.20 × 0.10 × 0.10 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: ψ scan (North et al., 1968 [triangle]) T min = 0.980, T max = 0.990
  • 2937 measured reflections
  • 1474 independent reflections
  • 906 reflections with I > 2σ(I)
  • R int = 0.056
  • 3 standard reflections frequency: 120 min intensity decay: 1%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.055
  • wR(F 2) = 0.153
  • S = 1.01
  • 1474 reflections
  • 109 parameters
  • H-atom parameters constrained
  • Δρmax = 0.23 e Å−3
  • Δρmin = −0.21 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989 [triangle]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809009878/hk2644sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809009878/hk2644Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

supplementary crystallographic information

Comment

Some derivatives of aniline are important chemical materials. We report herein the crystal structure of the title compound.

In the molecule of the title compound (Fig. 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. Ring A (C3-C8) is, of course, planar. Atoms C1, C2, N1, N2, O1 and O2 are -0.067 (3), -0.028 (2), -0.035 (3), -0.055 (3), 0.054 (3) and -0.163 (3) Å away from the ring plane of A, respectively.

In the crystal structure, weak intermolecular N-H···N and C-H···O hydrogen bonds (Table 1) link the molecules into chains, forming R22(10) ring motifs (Fig. 2) (Bernstein et al., 1995). in which they may be effective in the stabilization of the structure.

Experimental

For the preparation of the title compound, 2-ethylaniline (12.1 g) was dissolved in concentrated sulfuric acid (50 ml). The mixture was cooled to 273 K, and nitric acid (6.37 ml) was added in small portions. The mixture was stirred at 295 K for 0.5 h. Then, it was poured into a large volume of ice, used natrium hydroxydatum to neutralize excess acid, filtered, and dried. The compound was crystallized from cyclohexane (Corwin, 1955). Crystals suitable for X-ray analysis were obtained by slow evaporation of a methanol solution.

Refinement

H atoms were positioned geometrically, with N-H = 0.86 Å (for NH2) and C-H = 0.93, 0.97 and 0.96 Å for aromatic, methylene and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,N), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Figures

Fig. 1.
The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
Fig. 2.
A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.

Crystal data

C8H10N2O2F(000) = 704
Mr = 166.18Dx = 1.361 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 25 reflections
a = 23.037 (5) Åθ = 10–13°
b = 3.9540 (8) ŵ = 0.10 mm1
c = 18.393 (4) ÅT = 298 K
β = 104.51 (3)°Block, colorless
V = 1621.9 (6) Å30.20 × 0.10 × 0.10 mm
Z = 8

Data collection

Enraf–Nonius CAD-4 diffractometer906 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.056
graphiteθmax = 25.3°, θmin = 1.8°
ω/2θ scansh = −27→27
Absorption correction: ψ scan (North et al., 1968)k = 0→4
Tmin = 0.980, Tmax = 0.990l = −22→22
2937 measured reflections3 standard reflections every 120 min
1474 independent reflections intensity decay: 1%

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.153H-atom parameters constrained
S = 1.01w = 1/[σ2(Fo2) + (0.06P)2 + P] where P = (Fo2 + 2Fc2)/3
1474 reflections(Δ/σ)max < 0.001
109 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = −0.21 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.18034 (10)0.6924 (7)−0.09151 (11)0.0931 (9)
O20.08462 (10)0.6656 (7)−0.12713 (11)0.0921 (8)
N10.13189 (12)0.6134 (7)−0.08113 (12)0.0598 (6)
N20.23320 (8)0.2602 (7)0.17155 (11)0.0643 (8)
H2A0.26630.33900.16510.077*
H2B0.23220.17040.21380.077*
C10.06424 (11)−0.1027 (8)0.20919 (14)0.0592 (8)
H1A0.0687−0.19490.25860.089*
H1B0.0479−0.27210.17230.089*
H1C0.03770.08810.20250.089*
C20.12500 (10)0.0091 (7)0.19996 (12)0.0489 (7)
H2C0.14130.17380.23880.059*
H2D0.1515−0.18520.20870.059*
C30.12627 (10)0.1609 (6)0.12529 (12)0.0406 (6)
C40.07514 (10)0.1952 (7)0.06693 (13)0.0458 (6)
H4A0.03880.11740.07380.055*
C50.07620 (11)0.3397 (7)−0.00061 (13)0.0479 (7)
H5A0.04130.3608−0.03890.058*
C60.13008 (10)0.4519 (7)−0.01007 (12)0.0445 (6)
C70.18252 (10)0.4228 (7)0.04537 (13)0.0476 (7)
H7A0.21850.49930.03720.057*
C80.18102 (10)0.2780 (7)0.11353 (12)0.0442 (6)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0812 (15)0.132 (2)0.0759 (14)−0.0154 (16)0.0390 (12)0.0189 (15)
O20.0889 (15)0.121 (2)0.0588 (12)−0.0001 (15)0.0045 (11)0.0277 (14)
N10.0728 (16)0.0621 (16)0.0473 (12)−0.0051 (14)0.0201 (12)−0.0025 (12)
N20.0382 (11)0.101 (2)0.0502 (12)−0.0073 (13)0.0052 (9)−0.0046 (14)
C10.0702 (18)0.0533 (18)0.0597 (16)−0.0030 (15)0.0266 (13)0.0046 (14)
C20.0550 (15)0.0431 (16)0.0493 (14)0.0009 (12)0.0142 (12)−0.0057 (12)
C30.0433 (13)0.0346 (14)0.0441 (13)0.0014 (11)0.0115 (10)−0.0080 (11)
C40.0402 (13)0.0443 (16)0.0529 (14)−0.0059 (12)0.0117 (11)−0.0044 (13)
C50.0455 (14)0.0474 (16)0.0471 (14)−0.0007 (13)0.0044 (11)−0.0016 (13)
C60.0526 (14)0.0411 (15)0.0415 (13)0.0020 (12)0.0148 (11)−0.0082 (12)
C70.0438 (13)0.0515 (17)0.0519 (14)−0.0063 (13)0.0202 (11)−0.0094 (13)
C80.0394 (13)0.0479 (16)0.0448 (13)0.0022 (12)0.0097 (10)−0.0105 (12)

Geometric parameters (Å, °)

O1—N11.219 (3)C2—H2C0.9700
O2—N11.218 (3)C2—H2D0.9700
N1—C61.465 (3)C3—C41.387 (3)
N2—C81.395 (3)C3—C81.410 (3)
N2—H2A0.8600C4—C51.373 (3)
N2—H2B0.8600C4—H4A0.9300
C1—C21.517 (3)C5—C61.370 (3)
C1—H1A0.9600C5—H5A0.9300
C1—H1B0.9600C6—C71.377 (3)
C1—H1C0.9600C7—C81.387 (3)
C2—C31.506 (3)C7—H7A0.9300
O2—N1—O1122.8 (2)C4—C3—C8117.9 (2)
O2—N1—C6118.3 (2)C4—C3—C2122.5 (2)
O1—N1—C6118.9 (2)C8—C3—C2119.56 (19)
C8—N2—H2A120.0C5—C4—C3122.5 (2)
C8—N2—H2B120.0C5—C4—H4A118.8
H2A—N2—H2B120.0C3—C4—H4A118.8
C2—C1—H1A109.5C6—C5—C4118.2 (2)
C2—C1—H1B109.5C6—C5—H5A120.9
H1A—C1—H1B109.5C4—C5—H5A120.9
C2—C1—H1C109.5C5—C6—C7122.3 (2)
H1A—C1—H1C109.5C5—C6—N1118.9 (2)
H1B—C1—H1C109.5C7—C6—N1118.8 (2)
C3—C2—C1116.59 (19)C6—C7—C8119.2 (2)
C3—C2—H2C108.1C6—C7—H7A120.4
C1—C2—H2C108.1C8—C7—H7A120.4
C3—C2—H2D108.1C7—C8—N2120.0 (2)
C1—C2—H2D108.1C7—C8—C3120.0 (2)
H2C—C2—H2D107.3N2—C8—C3119.9 (2)
C1—C2—C3—C4−0.7 (4)O1—N1—C6—C75.9 (4)
C1—C2—C3—C8178.4 (2)C5—C6—C7—C8−0.6 (4)
C8—C3—C4—C5−0.5 (4)N1—C6—C7—C8178.4 (2)
C2—C3—C4—C5178.7 (3)C6—C7—C8—N2−177.1 (2)
C3—C4—C5—C60.3 (4)C6—C7—C8—C30.4 (4)
C4—C5—C6—C70.3 (4)C4—C3—C8—C70.1 (3)
C4—C5—C6—N1−178.7 (2)C2—C3—C8—C7−179.0 (2)
O2—N1—C6—C55.6 (4)C4—C3—C8—N2177.6 (2)
O1—N1—C6—C5−175.1 (3)C2—C3—C8—N2−1.5 (4)
O2—N1—C6—C7−173.4 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2B···N2i0.862.623.423 (3)156
C7—H7A···O1ii0.932.603.417 (4)147

Symmetry codes: (i) −x+1/2, y−1/2, −z+1/2; (ii) −x+1/2, −y+3/2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2644).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Corwin, H. (1955). J. Org. Chem.20, 1026–1029.
  • Enraf–Nonius (1989). CAD-4 Software Enraf–Nonius, Delft. The Netherlands.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography