PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 April 1; 65(Pt 4): o738.
Published online 2009 March 11. doi:  10.1107/S1600536809007934
PMCID: PMC2968841

2-[(1,3-Benzothia­zol-2-yl)imino­meth­yl]phenol

Abstract

The title compound, C14H10N2OS, is nearly planar, with a maximum deviation of 0.0698 (13) Å from the mean plane, and exists in an E configuration with respect to the C=N bond. The dihedral angle between the two benzene rings is 2.81 (9)°. There is an intra­molecular O—H(...)N hydrogen bond and inter­molecular C—H(...)O and C—H(...)N hydrogen bonds.

Related literature

For related structures of 2-amino­benzothia­zole derivatives and their Schiff bases, see: Büyükgüngör et al. (2004 [triangle]); Liang et al. (1999 [triangle]); Liu et al. (2009 [triangle]). For the biological activity of the title compound and related structures, see: Yan et al. (1999 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o738-scheme1.jpg

Experimental

Crystal data

  • C14H10N2OS
  • M r = 254.30
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o738-efi1.jpg
  • a = 12.150 (2) Å
  • b = 8.9578 (15) Å
  • c = 22.026 (4) Å
  • V = 2397.4 (7) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.26 mm−1
  • T = 298 K
  • 0.51 × 0.15 × 0.11 mm

Data collection

  • Bruker SMART APEX diffractometer
  • Absorption correction: none
  • 12166 measured reflections
  • 2353 independent reflections
  • 1939 reflections with I > 2σ(I)
  • R int = 0.036

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045
  • wR(F 2) = 0.113
  • S = 1.06
  • 2353 reflections
  • 163 parameters
  • H-atom parameters constrained
  • Δρmax = 0.26 e Å−3
  • Δρmin = −0.24 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 2000 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809007934/is2387sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809007934/is2387Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Dr Guangyou Zhang for help with the purification of the title compound.

supplementary crystallographic information

Comment

A wide range of biological activities have been attributed to the title compounds and compound having similar structure (Yan et al., 1999). One kind of schiff base of 2-aminobenzothiazole was prepared by Büyükgüngör et al. (2004). The title compound has been prepared to utilize it as an intermediate ligand and for complexation with various metals (Liang et al., 1999; Liu et al., 2009).

In the molecule of the title compound (Fig. 1), the bond length of C8—N2 [1.379 (2) Å] is shorter than normal C—N (1.47 Å). The entire molecule is almost planar due to the C6—C7—N2—C8—N1—C9 π-π conjunction. The dihedral angle between the two benzene rings (C1—C6 and C9—C14) is 2.81 (9)°. The benzothiazol and the o-hydroxy benzenyl at the C=N double bond are in an E configuration due to the hydrogen bond between O—H···N.

In the crystal structure, intermolecular C—H···O and C—H···N hydrogen bonds (Table 1) link the molecules (Fig. 2), in which they may be effective in the stabilization of the structure.

Experimental

2-Aminobenzithiazole (0.01 mol) and salicylaldehyde (0.01 mol) were dissolved in 50 ml ethanol at 298 K, then the reaction temperature raised to 343 K. After 3 h of reaction, the reaction mixture was condensed to 20 ml and cooled down to 273 K to give a dark orange solid. The crude was purified by column chromatography, affording salmon pink crystals of the title compound (yield 91%; m.p. 417–418 K).

Refinement

H atoms were positioned geometrically (O—H = 0.82 Å for OH, C—H = 0.93 Å for aromatic H and C—H = 0.93 Å for acyclic H) and were refined as riding, with Uiso(H) = 1.5Ueq(O) or 1.2Ueq(C).

Figures

Fig. 1.
Molecular structure of the title compound, with 30% probability displacement ellipsoids.
Fig. 2.
A partial packing diagram of the title compound. Hydrogen bonds were shown by dashed lines.

Crystal data

C14H10N2OSDx = 1.409 Mg m3
Mr = 254.30Melting point: 417 K
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 3147 reflections
a = 12.150 (2) Åθ = 2.5–27.1°
b = 8.9578 (15) ŵ = 0.26 mm1
c = 22.026 (4) ÅT = 298 K
V = 2397.4 (7) Å3Rod, yellow
Z = 80.51 × 0.15 × 0.11 mm
F(000) = 1056

Data collection

Bruker SMART APEX diffractometer1939 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.036
graphiteθmax = 26.0°, θmin = 1.9°
[var phi] and ω scansh = −14→14
12166 measured reflectionsk = −11→10
2353 independent reflectionsl = −27→18

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H-atom parameters constrained
S = 1.06w = 1/[σ2(Fo2) + (0.0596P)2 + 0.4758P] where P = (Fo2 + 2Fc2)/3
2353 reflections(Δ/σ)max = 0.001
163 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = −0.24 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.88027 (14)0.3483 (2)0.21383 (9)0.0409 (4)
C20.91856 (18)0.4419 (2)0.16848 (10)0.0541 (6)
H20.99370.44970.16110.065*
C30.8451 (2)0.5230 (3)0.13448 (10)0.0570 (6)
H30.87150.58580.10420.068*
C40.73328 (19)0.5138 (2)0.14422 (9)0.0530 (5)
H40.68470.56910.12060.064*
C50.69463 (16)0.4221 (2)0.18923 (9)0.0451 (5)
H50.61920.41590.19600.054*
C60.76636 (14)0.3374 (2)0.22515 (8)0.0370 (4)
C70.72317 (13)0.2428 (2)0.27182 (8)0.0381 (4)
H70.64740.23820.27730.046*
C80.74236 (14)0.0726 (2)0.35054 (8)0.0366 (4)
C90.74360 (15)−0.0870 (2)0.42653 (8)0.0397 (4)
C100.78616 (17)−0.1805 (2)0.47105 (9)0.0519 (5)
H100.8619−0.19120.47530.062*
C110.71662 (19)−0.2563 (3)0.50844 (10)0.0574 (6)
H110.7452−0.31900.53820.069*
C120.60333 (19)−0.2410 (3)0.50247 (11)0.0614 (6)
H120.5570−0.29350.52840.074*
C130.55866 (18)−0.1495 (3)0.45897 (10)0.0589 (6)
H130.4828−0.13950.45510.071*
C140.62954 (15)−0.0724 (2)0.42097 (9)0.0419 (4)
N10.80522 (12)−0.00477 (18)0.38564 (7)0.0419 (4)
N20.78539 (11)0.16428 (17)0.30618 (7)0.0382 (4)
O10.95340 (10)0.26804 (18)0.24619 (7)0.0549 (4)
H10.92100.22140.27280.082*
S10.59914 (4)0.05133 (6)0.36285 (2)0.04566 (19)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0337 (9)0.0443 (11)0.0447 (10)−0.0016 (8)0.0039 (8)−0.0077 (8)
C20.0457 (11)0.0596 (14)0.0571 (13)−0.0105 (10)0.0130 (10)−0.0046 (10)
C30.0714 (16)0.0517 (13)0.0480 (12)−0.0107 (12)0.0098 (11)0.0030 (10)
C40.0639 (14)0.0503 (12)0.0449 (12)0.0039 (11)−0.0043 (10)0.0009 (9)
C50.0394 (10)0.0477 (12)0.0481 (11)0.0018 (9)−0.0018 (8)−0.0045 (9)
C60.0320 (9)0.0384 (10)0.0405 (10)−0.0008 (7)0.0018 (7)−0.0081 (8)
C70.0261 (8)0.0428 (10)0.0455 (10)−0.0003 (8)0.0018 (7)−0.0058 (8)
C80.0277 (9)0.0405 (10)0.0416 (10)0.0008 (7)0.0012 (7)−0.0073 (8)
C90.0390 (10)0.0424 (11)0.0378 (10)0.0018 (8)0.0022 (8)−0.0064 (8)
C100.0478 (11)0.0582 (13)0.0497 (12)0.0082 (10)−0.0029 (9)0.0003 (10)
C110.0681 (14)0.0566 (14)0.0475 (12)0.0035 (11)−0.0003 (10)0.0086 (10)
C120.0591 (14)0.0670 (15)0.0579 (14)−0.0063 (12)0.0101 (10)0.0144 (12)
C130.0427 (11)0.0685 (15)0.0656 (14)−0.0061 (10)0.0086 (10)0.0116 (12)
C140.0384 (9)0.0430 (11)0.0443 (11)−0.0005 (8)0.0002 (8)−0.0022 (8)
N10.0332 (8)0.0472 (9)0.0453 (9)0.0050 (7)0.0017 (7)−0.0014 (8)
N20.0302 (7)0.0420 (9)0.0425 (8)0.0007 (6)0.0034 (6)−0.0034 (7)
O10.0289 (6)0.0699 (10)0.0660 (10)0.0016 (7)0.0052 (6)0.0088 (8)
S10.0277 (3)0.0558 (4)0.0535 (3)−0.0020 (2)−0.00019 (19)0.0079 (2)

Geometric parameters (Å, °)

C1—O11.347 (2)C8—N21.379 (2)
C1—C21.384 (3)C8—S11.7714 (18)
C1—C61.410 (2)C9—N11.384 (2)
C2—C31.373 (3)C9—C101.389 (3)
C2—H20.9300C9—C141.397 (3)
C3—C41.378 (3)C10—C111.362 (3)
C3—H30.9300C10—H100.9300
C4—C51.371 (3)C11—C121.390 (3)
C4—H40.9300C11—H110.9300
C5—C61.400 (3)C12—C131.373 (3)
C5—H50.9300C12—H120.9300
C6—C71.432 (3)C13—C141.385 (3)
C7—N21.280 (2)C13—H130.9300
C7—H70.9300C14—S11.733 (2)
C8—N11.289 (2)O1—H10.8200
O1—C1—C2118.89 (16)N2—C8—S1123.03 (13)
O1—C1—C6121.15 (17)N1—C9—C10125.37 (17)
C2—C1—C6119.96 (18)N1—C9—C14115.45 (16)
C3—C2—C1119.71 (19)C10—C9—C14119.17 (18)
C3—C2—H2120.1C11—C10—C9119.79 (19)
C1—C2—H2120.1C11—C10—H10120.1
C2—C3—C4121.6 (2)C9—C10—H10120.1
C2—C3—H3119.2C10—C11—C12120.5 (2)
C4—C3—H3119.2C10—C11—H11119.7
C5—C4—C3119.1 (2)C12—C11—H11119.7
C5—C4—H4120.4C13—C12—C11121.1 (2)
C3—C4—H4120.4C13—C12—H12119.4
C4—C5—C6121.34 (19)C11—C12—H12119.4
C4—C5—H5119.3C12—C13—C14118.3 (2)
C6—C5—H5119.3C12—C13—H13120.9
C5—C6—C1118.29 (17)C14—C13—H13120.9
C5—C6—C7119.87 (16)C13—C14—C9121.12 (18)
C1—C6—C7121.84 (17)C13—C14—S1129.24 (16)
N2—C7—C6122.23 (15)C9—C14—S1109.64 (14)
N2—C7—H7118.9C8—N1—C9110.86 (15)
C6—C7—H7118.9C7—N2—C8121.47 (15)
N1—C8—N2121.36 (16)C1—O1—H1109.5
N1—C8—S1115.61 (14)C14—S1—C888.44 (9)
O1—C1—C2—C3179.13 (19)C12—C13—C14—C90.1 (3)
C6—C1—C2—C3−0.4 (3)C12—C13—C14—S1−179.36 (17)
C1—C2—C3—C4−0.1 (3)N1—C9—C14—C13179.63 (19)
C2—C3—C4—C50.5 (3)C10—C9—C14—C13−0.1 (3)
C3—C4—C5—C6−0.3 (3)N1—C9—C14—S1−0.8 (2)
C4—C5—C6—C1−0.2 (3)C10—C9—C14—S1179.44 (15)
C4—C5—C6—C7179.96 (18)N2—C8—N1—C9179.65 (15)
O1—C1—C6—C5−178.96 (17)S1—C8—N1—C9−1.0 (2)
C2—C1—C6—C50.5 (3)C10—C9—N1—C8−179.13 (18)
O1—C1—C6—C70.9 (3)C14—C9—N1—C81.2 (2)
C2—C1—C6—C7−179.64 (18)C6—C7—N2—C8−179.39 (16)
C5—C6—C7—N2−179.38 (17)N1—C8—N2—C7−179.05 (17)
C1—C6—C7—N20.8 (3)S1—C8—N2—C71.6 (2)
N1—C9—C10—C11−179.61 (19)C13—C14—S1—C8179.7 (2)
C14—C9—C10—C110.1 (3)C9—C14—S1—C80.24 (14)
C9—C10—C11—C12−0.1 (3)N1—C8—S1—C140.43 (15)
C10—C11—C12—C130.0 (4)N2—C8—S1—C14179.80 (15)
C11—C12—C13—C140.0 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1···N20.821.882.6034 (19)147
C7—H7···O1i0.932.433.309 (2)158
C2—H2···N1ii0.932.683.593 (2)167

Symmetry codes: (i) x−1/2, y, −z+1/2; (ii) −x+2, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2387).

References

  • Bruker (2000). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Büyükgüngör, O., Çalışkan, N., Davran, C. & Batı, H. (2004). Acta Cryst E60, o1414–o1416.
  • Liang, F.-Z., Du, M.-R., Shen, J.-C. & Xi, H. (1999). Chin. J. Inorg. Chem.15, 393–396.
  • Liu, S.-Q., Bi, C.-F. & Fan, Y.-H. (2009). Fine Chem.26, 135–137.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Yan, W., He, J. & Yu, Z. (1999). Fine Chem.25, 631–635.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography