PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 April 1; 65(Pt 4): o747.
Published online 2009 March 14. doi:  10.1107/S1600536809008113
PMCID: PMC2968840

N,N′-Bis(4-bromo­benzyl­idene)-2,2-dimethyl­propane-1,3-diamine

Abstract

The mol­ecule of the title compound, C19H20Br2N2, is a potential bidentate Schiff base ligand. The two benzene rings are inclined at a dihedral angle of 30.85 (8)°. An inter­esting feature of the crystal structure is a weak inter­molecular Br(...)Br [3.4752 (4) Å] inter­action which is shorter than the sum of the van der Waals radii of the Br atoms and links neighbouring mol­ecules into chains along the c axis. The crystal structure is further stabilized by inter­molecular C—H(...)π inter­actions.

Related literature

For details of hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]). For related structure see, for example: Li et al. (2005 [triangle]); Bomfim et al. (2005 [triangle]); Glidewell et al. (2005 [triangle], 2006 [triangle]); Sun et al. (2004 [triangle]); Fun et al. (2008 [triangle]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o747-scheme1.jpg

Experimental

Crystal data

  • C19H20Br2N2
  • M r = 436.19
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o747-efi1.jpg
  • a = 5.6687 (1) Å
  • b = 7.7919 (2) Å
  • c = 41.5932 (9) Å
  • V = 1837.17 (7) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 4.41 mm−1
  • T = 100 K
  • 0.45 × 0.44 × 0.12 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.229, T max = 0.586
  • 38732 measured reflections
  • 9454 independent reflections
  • 7585 reflections with I > 2σ(I)
  • R int = 0.049

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037
  • wR(F 2) = 0.079
  • S = 1.03
  • 9454 reflections
  • 208 parameters
  • H-atom parameters constrained
  • Δρmax = 1.04 e Å−3
  • Δρmin = −0.61 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 3971 Friedel pairs
  • Flack parameter: 0.019 (6)

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT (Bruker, 2005 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809008113/at2737sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809008113/at2737Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

HKF and RK thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. RK thanks Universiti Sains Malaysia for a post-doctoral research fellowship. HK thanks PNU for financial support. HKF also thanks Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

supplementary crystallographic information

Comment

Schiff bases are one of most prevalent mixed-donor ligands in the field of coordination chemistry. They play an important role in the development of coordination chemistry related to catalysis and enzymatic reactions, magnetism, and supramolecular architectures. Structures of Schiff bases derived from substituted benzaldehydes and closely related to the title compound have been reported previously (Li et al., 2005; Bomfim et al., 2005; Glidewell et al., 2005, 2006; Sun et al., 2004; Fun et al., 2008).

In the title compound, Fig. 1, intramolecular C—H···N hydrogen bonds forms five-membered rings, producing S(5) ring motifs (Bernstein et al., 1995). The two benzene rings make a dihedral angle of 30.85 (8)°. The crystal structure is further stabilized by weak intermolecular C—H···π interactions [Cg1 and Cg2 are the centroids of the C1–C6 and C12–C17 benzene rings] (Table 1). The interesting feature of the crystal structure is weak intermolecular Br···Br [3.4752 (4) Å; symmetry code: 5/2 - x, 1 - y, -1/2 + z] interaction which is shorter than the sum of the van der Waals radius of Br atoms and link neighbouring molecules into chains along the c axis (Fig. 2).

Experimental

The synthetic method has been described earlier (Fun et al., 2008), except that 4-bromobenzaldehyde was used. Single crystals suitable for X-ray diffraction were obtained by evaporation of an ethanol solution at room temperature.

Refinement

All of the hydrogen atoms were positioned geometrically and refined using a riding model approximation with C—H = 0.95–0.99 Å and Uiso(H) = 1.2 or 1.5Ueq(C). In the presence of the sufficient anomalous scattering, the absoulte configuration was determined (3971 Friedel pairs).

Figures

Fig. 1.
The molecular structure of the title compound with atom labels and 50% probability ellipsoids for non-H atoms. Intramolecular hydrogen bond is shown as dashed line.
Fig. 2.
The crystal packing of the title compound, viewed down the a- axis showing chains along the c-axis by Br···Br interactions.

Crystal data

C19H20Br2N2F(000) = 872
Mr = 436.19Dx = 1.577 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 9987 reflections
a = 5.6687 (1) Åθ = 2.7–35.5°
b = 7.7919 (2) ŵ = 4.41 mm1
c = 41.5932 (9) ÅT = 100 K
V = 1837.17 (7) Å3Block, colourless
Z = 40.45 × 0.44 × 0.12 mm

Data collection

Bruker SMART APEXII CCD area-detector diffractometer9454 independent reflections
Radiation source: fine-focus sealed tube7585 reflections with I > 2σ(I)
graphiteRint = 0.049
[var phi] and ω scansθmax = 37.5°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Bruker, 2005)h = −9→9
Tmin = 0.229, Tmax = 0.586k = −10→13
38732 measured reflectionsl = −71→55

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.079w = 1/[σ2(Fo2) + (0.0316P)2 + 0.2032P] where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.011
9454 reflectionsΔρmax = 1.04 e Å3
208 parametersΔρmin = −0.60 e Å3
0 restraintsAbsolute structure: Flack (1983), 3971 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.019 (6)

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br11.59060 (4)0.70918 (3)0.679860 (5)0.03041 (5)
Br21.02132 (3)0.35735 (2)1.095005 (4)0.02216 (4)
N10.9734 (3)0.7039 (2)0.82239 (4)0.0214 (3)
N20.8180 (3)0.6175 (2)0.93830 (4)0.0198 (3)
C11.0509 (3)0.5599 (2)0.74067 (5)0.0203 (3)
H1A0.90620.49910.73880.024*
C21.1894 (4)0.5835 (3)0.71353 (5)0.0219 (3)
H2A1.14100.54030.69320.026*
C31.4013 (3)0.6720 (2)0.71684 (4)0.0212 (3)
C41.4767 (3)0.7348 (2)0.74652 (4)0.0197 (3)
H4A1.62300.79350.74840.024*
C51.3353 (3)0.7104 (3)0.77327 (4)0.0184 (3)
H5A1.38480.75280.79360.022*
C61.1191 (3)0.6235 (2)0.77059 (4)0.0180 (3)
C70.9574 (3)0.6067 (2)0.79820 (5)0.0198 (3)
H7A0.83860.52080.79780.024*
C80.8001 (3)0.6814 (3)0.84805 (4)0.0209 (3)
H8A0.69960.58080.84320.025*
H8B0.69720.78390.84910.025*
C90.9225 (3)0.6548 (2)0.88094 (4)0.0179 (3)
C100.7242 (3)0.6457 (2)0.90606 (4)0.0188 (3)
H10A0.63330.75420.90570.023*
H10B0.61520.55100.90050.023*
C110.6955 (3)0.5293 (2)0.95790 (4)0.0178 (3)
H11A0.54860.48410.95090.021*
C120.7732 (3)0.4951 (2)0.99097 (4)0.0165 (3)
C130.6324 (3)0.3938 (2)1.01110 (5)0.0184 (3)
H13A0.48610.35141.00330.022*
C140.7025 (3)0.3543 (3)1.04224 (4)0.0196 (3)
H14A0.60500.28671.05580.024*
C150.9177 (3)0.4158 (2)1.05301 (4)0.0184 (3)
C161.0606 (3)0.5189 (2)1.03375 (4)0.0192 (3)
H16A1.20630.56161.04170.023*
C170.9877 (3)0.5583 (2)1.00290 (4)0.0193 (3)
H17A1.08380.62890.98970.023*
C181.0856 (3)0.8053 (3)0.88844 (5)0.0241 (4)
H18A1.16150.78660.90930.036*
H18B0.99350.91170.88910.036*
H18C1.20650.81420.87170.036*
C191.0619 (4)0.4868 (3)0.88061 (5)0.0244 (4)
H19A1.13930.47060.90150.037*
H19B1.18160.49130.86360.037*
H19C0.95440.39080.87650.037*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.02919 (10)0.04538 (12)0.01667 (8)0.00266 (9)0.00467 (7)0.00429 (9)
Br20.02804 (9)0.02117 (7)0.01728 (8)−0.00042 (7)−0.00430 (7)0.00085 (7)
N10.0223 (6)0.0248 (7)0.0169 (6)−0.0017 (6)0.0014 (6)0.0021 (6)
N20.0204 (7)0.0234 (8)0.0155 (7)0.0001 (6)0.0011 (5)0.0003 (6)
C10.0215 (8)0.0207 (8)0.0189 (8)0.0001 (6)−0.0015 (6)−0.0033 (6)
C20.0239 (8)0.0251 (8)0.0168 (8)0.0028 (7)−0.0041 (7)−0.0041 (7)
C30.0228 (7)0.0233 (9)0.0176 (8)0.0044 (6)0.0029 (6)0.0023 (6)
C40.0183 (7)0.0218 (7)0.0190 (7)−0.0006 (6)0.0004 (6)0.0019 (6)
C50.0194 (7)0.0208 (8)0.0150 (7)−0.0003 (7)−0.0011 (6)−0.0011 (7)
C60.0209 (7)0.0170 (8)0.0161 (7)0.0012 (6)0.0000 (6)0.0006 (6)
C70.0178 (7)0.0216 (8)0.0199 (8)−0.0008 (6)−0.0005 (6)0.0034 (6)
C80.0181 (7)0.0277 (10)0.0168 (8)−0.0001 (6)0.0012 (6)0.0024 (7)
C90.0160 (7)0.0201 (7)0.0175 (7)0.0003 (6)0.0006 (5)0.0009 (6)
C100.0186 (7)0.0221 (7)0.0157 (7)−0.0007 (6)−0.0008 (6)0.0019 (8)
C110.0191 (7)0.0186 (8)0.0157 (7)−0.0003 (6)0.0002 (6)−0.0017 (6)
C120.0181 (7)0.0161 (7)0.0152 (7)0.0006 (6)0.0006 (6)−0.0013 (6)
C130.0166 (7)0.0197 (8)0.0189 (8)−0.0009 (6)0.0002 (6)−0.0003 (6)
C140.0206 (7)0.0205 (7)0.0178 (8)−0.0013 (7)0.0020 (6)0.0015 (7)
C150.0226 (8)0.0186 (7)0.0141 (7)0.0027 (6)−0.0013 (6)−0.0020 (6)
C160.0176 (8)0.0191 (7)0.0208 (8)−0.0016 (6)0.0004 (6)−0.0026 (6)
C170.0206 (7)0.0192 (7)0.0180 (7)−0.0022 (7)0.0004 (7)−0.0009 (6)
C180.0212 (8)0.0259 (9)0.0251 (9)−0.0045 (7)0.0019 (7)−0.0011 (8)
C190.0246 (9)0.0235 (8)0.0250 (9)0.0057 (7)0.0037 (7)0.0021 (7)

Geometric parameters (Å, °)

Br1—C31.8978 (19)C9—C191.529 (3)
Br2—C151.8983 (18)C9—C101.536 (2)
N1—C71.263 (2)C10—H10A0.9900
N1—C81.462 (2)C10—H10B0.9900
N2—C111.272 (2)C11—C121.469 (3)
N2—C101.459 (2)C11—H11A0.9500
C1—C21.387 (3)C12—C131.400 (3)
C1—C61.394 (3)C12—C171.402 (3)
C1—H1A0.9500C13—C141.389 (3)
C2—C31.392 (3)C13—H13A0.9500
C2—H2A0.9500C14—C151.385 (3)
C3—C41.395 (3)C14—H14A0.9500
C4—C51.384 (2)C15—C161.394 (3)
C4—H4A0.9500C16—C171.383 (3)
C5—C61.404 (3)C16—H16A0.9500
C5—H5A0.9500C17—H17A0.9500
C6—C71.475 (3)C18—H18A0.9800
C7—H7A0.9500C18—H18B0.9800
C8—C91.548 (3)C18—H18C0.9800
C8—H8A0.9900C19—H19A0.9800
C8—H8B0.9900C19—H19B0.9800
C9—C181.525 (3)C19—H19C0.9800
C7—N1—C8117.50 (17)C9—C10—H10A109.3
C11—N2—C10118.11 (16)N2—C10—H10B109.3
C2—C1—C6121.48 (17)C9—C10—H10B109.3
C2—C1—H1A119.3H10A—C10—H10B108.0
C6—C1—H1A119.3N2—C11—C12122.30 (17)
C1—C2—C3118.26 (18)N2—C11—H11A118.9
C1—C2—H2A120.9C12—C11—H11A118.9
C3—C2—H2A120.9C13—C12—C17118.72 (17)
C2—C3—C4121.73 (18)C13—C12—C11119.43 (16)
C2—C3—Br1118.89 (15)C17—C12—C11121.84 (17)
C4—C3—Br1119.37 (14)C14—C13—C12121.29 (17)
C5—C4—C3119.03 (17)C14—C13—H13A119.4
C5—C4—H4A120.5C12—C13—H13A119.4
C3—C4—H4A120.5C15—C14—C13118.47 (17)
C4—C5—C6120.53 (16)C15—C14—H14A120.8
C4—C5—H5A119.7C13—C14—H14A120.8
C6—C5—H5A119.7C14—C15—C16121.70 (17)
C1—C6—C5118.96 (16)C14—C15—Br2119.15 (14)
C1—C6—C7119.40 (17)C16—C15—Br2119.15 (14)
C5—C6—C7121.56 (16)C17—C16—C15119.17 (17)
N1—C7—C6121.50 (17)C17—C16—H16A120.4
N1—C7—H7A119.3C15—C16—H16A120.4
C6—C7—H7A119.3C16—C17—C12120.63 (17)
N1—C8—C9111.10 (15)C16—C17—H17A119.7
N1—C8—H8A109.4C12—C17—H17A119.7
C9—C8—H8A109.4C9—C18—H18A109.5
N1—C8—H8B109.4C9—C18—H18B109.5
C9—C8—H8B109.4H18A—C18—H18B109.5
H8A—C8—H8B108.0C9—C18—H18C109.5
C18—C9—C19110.28 (15)H18A—C18—H18C109.5
C18—C9—C10109.88 (15)H18B—C18—H18C109.5
C19—C9—C10110.16 (15)C9—C19—H19A109.5
C18—C9—C8110.46 (16)C9—C19—H19B109.5
C19—C9—C8109.78 (16)H19A—C19—H19B109.5
C10—C9—C8106.20 (14)C9—C19—H19C109.5
N2—C10—C9111.43 (14)H19A—C19—H19C109.5
N2—C10—H10A109.3H19B—C19—H19C109.5
C6—C1—C2—C30.4 (3)C11—N2—C10—C9−146.93 (17)
C1—C2—C3—C40.7 (3)C18—C9—C10—N2−61.5 (2)
C1—C2—C3—Br1−178.88 (14)C19—C9—C10—N260.2 (2)
C2—C3—C4—C5−0.9 (3)C8—C9—C10—N2178.99 (16)
Br1—C3—C4—C5178.64 (14)C10—N2—C11—C12−179.41 (16)
C3—C4—C5—C60.1 (3)N2—C11—C12—C13−178.58 (17)
C2—C1—C6—C5−1.2 (3)N2—C11—C12—C170.2 (3)
C2—C1—C6—C7175.36 (17)C17—C12—C13—C14−0.6 (3)
C4—C5—C6—C10.9 (3)C11—C12—C13—C14178.16 (17)
C4—C5—C6—C7−175.54 (17)C12—C13—C14—C15−0.8 (3)
C8—N1—C7—C6177.89 (16)C13—C14—C15—C161.7 (3)
C1—C6—C7—N1−157.81 (18)C13—C14—C15—Br2−178.06 (14)
C5—C6—C7—N118.7 (3)C14—C15—C16—C17−1.2 (3)
C7—N1—C8—C9126.29 (18)Br2—C15—C16—C17178.54 (14)
N1—C8—C9—C1857.0 (2)C15—C16—C17—C12−0.2 (3)
N1—C8—C9—C19−64.8 (2)C13—C12—C17—C161.1 (3)
N1—C8—C9—C10176.10 (15)C11—C12—C17—C16−177.63 (17)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C18—H18C···N10.982.592.929 (3)101
C4—H4A···Cg1i0.952.853.5630 (18)132
C13—H13A···Cg2ii0.952.743.4648 (18)134

Symmetry codes: (i) x+7/2, −y+1/2, −z+1; (ii) −x−1, y+1/2, −z+5/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2737).

References

  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555– 1573.
  • Bomfim, J. A. S., Wardell, J. L., Low, J. N., Skakle, J. M. S. & Glidewell, C. (2005). Acta Cryst. C61, o53–o56. [PubMed]
  • Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Fun, H.-K., Kargar, H. & Kia, R. (2008). Acta Cryst.E64, o1308. [PMC free article] [PubMed]
  • Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2005). Acta Cryst. E61, o3551–o3553.
  • Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2006). Acta Cryst. C62, o1–o4. [PubMed]
  • Li, Y.-G., Zhu, H.-L., Chen, X.-Z. & Song, Y. (2005). Acta Cryst. E61, o4156–o4157.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Sun, Y.-X., You, Z.-L. & Zhu, H.-L. (2004). Acta Cryst. E60, o1707–o1708.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography