PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 April 1; 65(Pt 4): m457–m458.
Published online 2009 March 28. doi:  10.1107/S1600536809011015
PMCID: PMC2968839

Bis(2-hydroxy-N′-isopropylidenebenzo­hydrazidato-κ2 N′,O)bis­(pyridine-κN)cobalt(II)

Abstract

In the title complex, [Co(C10H11N2O2)2(C5H5N)2], the CoII atom lies on a centre of symmetry and adopts a distorted cis-CoO2N4 octa­hedral geometry. The two acetone salicyloylhydrazone ligands are deprotonated and act as N,O-bidentate monoanionic ligands, forming the equatorial plane, while the axial positions are occupied by two N atoms of two pyridine mol­ecules. The complex presents O—H(...)N and C—H(...)N intra­molecular hydrogen bonds. Inter­molecular C—H(...)N and C—H(...)O inter­actions are also present in the crystal.

Related literature

For the crystal structure of acetone salicylhydrazone, see: Kraudelt et al. (1996 [triangle]). For the crystal structure of iron and nickel complexes with related aroylhydrazone derivatives, see: Matoga et al. (2007 [triangle]) and Liu et al. (2005 [triangle]), respectively. For the biological activity of aroylhydrazones, see: Armstrong et al. (2003 [triangle]). For the crystal structure of 3-hydr­oxy-N-[phen­yl(2-pyrid­yl)methyl­ene]-2-naphthohydrazide, see: Kang et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m457-scheme1.jpg

Experimental

Crystal data

  • [Co(C10H11N2O2)2(C5H5N)2]
  • M r = 599.55
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m457-efi1.jpg
  • a = 7.7751 (9) Å
  • b = 10.0168 (15) Å
  • c = 18.751 (2) Å
  • β = 96.621 (2)°
  • V = 1450.6 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.64 mm−1
  • T = 298 K
  • 0.34 × 0.19 × 0.16 mm

Data collection

  • Siemens SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.813, T max = 0.905
  • 7087 measured reflections
  • 2547 independent reflections
  • 1675 reflections with I > 2σ(I)
  • R int = 0.039

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041
  • wR(F 2) = 0.106
  • S = 1.00
  • 2547 reflections
  • 187 parameters
  • H-atom parameters constrained
  • Δρmax = 0.30 e Å−3
  • Δρmin = −0.24 e Å−3

Data collection: SMART (Siemens, 1996 [triangle]); cell refinement: SAINT (Siemens, 1996 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809011015/bg2240sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809011015/bg2240Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We acknowledge the financial support of the National Natural Science Foundation of China (20671048).

supplementary crystallographic information

Comment

Aroylhydrazone and their metal complexes are of great importance owing to the wide spread applications in the fields of coordination chemistry and their biological activities. As an extension of our work on the structural characterization of aroylhydrazone derivatives (Liu et al., 2005; Kang et al., 2007), the title compound (I) was synthesized.

Fig. 1 shows a molecular view of (I). The complex consists of one Co cation lying on a centre of symmetry [symmetry code: -x, 1 - y, -z], two acetone salicyloyl hydrazone ligands and two coordinated pyridine molecules. The monoanionic ligand (which is in its enol form, (C1—O1: 1.270 (3) Å) acts as bidentate forming the equatorial plane (Co1—O1(2.028 (2) Å and Co1—N2(2.179 (2) Å). Two pyridine molecules coordinate in the axial positions, the axial bond length (Co1—N3 2.233 (2) Å) being slightly longer than those of in the equatorial plane. In addition anumber of intramolecular (conventional) O—H···N and (non conventional) C—H···N, C—H···O H-bonds are found in the complex (Table 1).

Experimental

To a stirred 10 ml pyridine solution of acetone salicyloylhydrazone (0.0384 g,0.2 mmol), 10 ml methanol solution of cobalt dichloride (0.0245 g,0.1 mmol) was added dropwise. The reaction mixture was stirred for 4 h at room temperature and then filtered. Brown single crystals were obtained from the filtrate after three weeks. Anal. Calcd (%) for C30H32O4N6Co (Mr = 599.55): C, 60.10; H, 5.38; N, 14.02; Found (%): C, 60.09; H, 5.38; N, 14.03

Refinement

All H atoms were placed geometrically and treated as riding on their parent atoms with O—H 0.82 C—H 0.96 Å (methyl) [Uiso(H) = 1.5Ueq(C, O)] and C—H 0.93 (phenyl and pyridine) 0.93Å [Uiso(H) = 1.2Ueq(C)].

Figures

Fig. 1.
The molecular structure of the compound, showing 30% probability displacement ellipsoids. Unlabelled atoms are related to the labelled ones by symmetry operation (-x, 1 - y, -z). C-bound H atoms have been omitted for clarity.

Crystal data

[Co(C10H11N2O2)2(C5H5N)2]F(000) = 626
Mr = 599.55Dx = 1.373 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1792 reflections
a = 7.7751 (9) Åθ = 2.3–21.6°
b = 10.0168 (15) ŵ = 0.64 mm1
c = 18.751 (2) ÅT = 298 K
β = 96.621 (2)°Block, brown
V = 1450.6 (3) Å30.34 × 0.19 × 0.16 mm
Z = 2

Data collection

Siemens SMART CCD area-detector diffractometer2547 independent reflections
Radiation source: fine-focus sealed tube1675 reflections with I > 2σ(I)
graphiteRint = 0.039
[var phi] and ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −9→9
Tmin = 0.813, Tmax = 0.905k = −11→11
7087 measured reflectionsl = −11→22

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H-atom parameters constrained
S = 1.00w = 1/[σ2(Fo2) + (0.046P)2 + 0.3767P] where P = (Fo2 + 2Fc2)/3
2547 reflections(Δ/σ)max < 0.001
187 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = −0.23 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Co10.00000.50000.00000.0385 (2)
N10.0380 (3)0.7734 (2)0.06265 (13)0.0414 (6)
N20.1297 (3)0.6915 (2)0.01957 (13)0.0423 (6)
N30.1601 (3)0.4115 (2)0.09485 (13)0.0437 (6)
O1−0.1480 (2)0.59481 (19)0.06648 (11)0.0461 (5)
O2−0.0353 (3)0.9926 (2)0.11969 (14)0.0671 (7)
H20.01620.94150.09540.101*
C1−0.1001 (4)0.7132 (3)0.08301 (15)0.0386 (7)
C2−0.2036 (4)0.7937 (3)0.12879 (16)0.0413 (7)
C3−0.1665 (5)0.9282 (3)0.14443 (18)0.0517 (9)
C4−0.2665 (5)0.9984 (4)0.1888 (2)0.0663 (10)
H4−0.24361.08810.19850.080*
C5−0.3972 (6)0.9365 (4)0.2178 (2)0.0767 (12)
H5−0.46190.98410.24790.092*
C6−0.4357 (5)0.8035 (4)0.2032 (2)0.0748 (11)
H6−0.52540.76150.22330.090*
C7−0.3389 (4)0.7348 (3)0.15852 (18)0.0564 (9)
H7−0.36550.64590.14800.068*
C80.2667 (4)0.7445 (3)0.00010 (18)0.0499 (8)
C90.3747 (5)0.6670 (4)−0.0454 (2)0.0804 (12)
H9A0.32730.5790−0.05300.121*
H9B0.49070.6608−0.02180.121*
H9C0.37600.7111−0.09080.121*
C100.3260 (5)0.8822 (3)0.0211 (2)0.0697 (11)
H10A0.24580.9461−0.00180.105*
H10B0.43860.89720.00640.105*
H10C0.33170.89180.07230.105*
C110.2490 (4)0.4881 (3)0.14411 (17)0.0553 (9)
H110.24100.58030.13880.066*
C120.3514 (4)0.4381 (4)0.20208 (19)0.0621 (10)
H120.41030.49570.23530.074*
C130.3666 (4)0.3029 (3)0.21092 (19)0.0620 (10)
H130.43650.26690.24980.074*
C140.2763 (4)0.2223 (3)0.16120 (18)0.0593 (9)
H140.28330.12990.16550.071*
C150.1749 (4)0.2803 (3)0.10463 (18)0.0520 (9)
H150.11310.22450.07130.062*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Co10.0379 (3)0.0375 (3)0.0410 (4)−0.0085 (3)0.0080 (2)−0.0035 (3)
N10.0431 (15)0.0393 (13)0.0413 (15)−0.0086 (12)0.0032 (12)−0.0028 (13)
N20.0413 (15)0.0419 (14)0.0440 (15)−0.0102 (12)0.0055 (12)−0.0017 (12)
N30.0434 (15)0.0448 (15)0.0427 (16)−0.0065 (12)0.0039 (12)0.0008 (13)
O10.0472 (12)0.0390 (12)0.0549 (14)−0.0114 (10)0.0177 (10)−0.0065 (11)
O20.0715 (16)0.0431 (13)0.0864 (18)−0.0074 (12)0.0079 (14)−0.0139 (13)
C10.0430 (18)0.0383 (17)0.0333 (17)−0.0019 (14)−0.0011 (14)0.0028 (14)
C20.0469 (18)0.0400 (17)0.0357 (17)0.0033 (14)−0.0002 (14)−0.0022 (15)
C30.057 (2)0.049 (2)0.046 (2)0.0038 (17)−0.0061 (17)−0.0022 (17)
C40.081 (3)0.052 (2)0.064 (2)0.016 (2)0.000 (2)−0.017 (2)
C50.086 (3)0.086 (3)0.060 (3)0.034 (3)0.016 (2)−0.009 (2)
C60.081 (3)0.070 (3)0.079 (3)0.015 (2)0.035 (2)0.005 (2)
C70.063 (2)0.050 (2)0.059 (2)0.0054 (17)0.0165 (18)0.0016 (18)
C80.0446 (19)0.051 (2)0.054 (2)−0.0164 (16)0.0066 (16)0.0036 (17)
C90.064 (2)0.077 (3)0.106 (3)−0.024 (2)0.035 (2)−0.010 (3)
C100.064 (2)0.057 (2)0.089 (3)−0.0276 (18)0.011 (2)0.001 (2)
C110.061 (2)0.0479 (19)0.053 (2)−0.0063 (17)−0.0081 (17)−0.0033 (19)
C120.067 (2)0.064 (2)0.051 (2)−0.0071 (19)−0.0117 (19)−0.0052 (19)
C130.065 (2)0.066 (2)0.052 (2)−0.0037 (19)−0.0074 (18)0.009 (2)
C140.065 (2)0.050 (2)0.061 (2)−0.0064 (17)−0.0011 (19)0.0112 (19)
C150.057 (2)0.048 (2)0.050 (2)−0.0099 (16)−0.0015 (17)−0.0015 (17)

Geometric parameters (Å, °)

Co1—O12.028 (2)C5—H50.9300
Co1—O1i2.028 (2)C6—C71.374 (5)
Co1—N2i2.179 (2)C6—H60.9300
Co1—N22.179 (2)C7—H70.9300
Co1—N32.233 (2)C8—C91.483 (5)
Co1—N3i2.233 (2)C8—C101.492 (4)
N1—C11.326 (3)C9—H9A0.9600
N1—N21.403 (3)C9—H9B0.9600
N2—C81.280 (4)C9—H9C0.9600
N3—C151.330 (4)C10—H10A0.9600
N3—C111.332 (3)C10—H10B0.9600
O1—C11.270 (3)C10—H10C0.9600
O2—C31.335 (4)C11—C121.366 (4)
O2—H20.8200C11—H110.9300
C1—C21.481 (4)C12—C131.368 (5)
C2—C71.379 (4)C12—H120.9300
C2—C31.402 (4)C13—C141.365 (4)
C3—C41.392 (5)C13—H130.9300
C4—C51.357 (5)C14—C151.375 (4)
C4—H40.9300C14—H140.9300
C5—C61.386 (5)C15—H150.9300
O1—Co1—O1i180.00 (9)C6—C5—H5119.5
O1—Co1—N2i103.38 (8)C7—C6—C5118.7 (4)
O1i—Co1—N2i76.62 (8)C7—C6—H6120.6
O1—Co1—N276.62 (8)C5—C6—H6120.6
O1i—Co1—N2103.38 (8)C6—C7—C2122.0 (3)
N2i—Co1—N2180.00 (13)C6—C7—H7119.0
O1—Co1—N390.00 (9)C2—C7—H7119.0
O1i—Co1—N390.00 (9)N2—C8—C9119.4 (3)
N2i—Co1—N389.38 (9)N2—C8—C10123.4 (3)
N2—Co1—N390.62 (9)C9—C8—C10117.2 (3)
O1—Co1—N3i90.00 (9)C8—C9—H9A109.5
O1i—Co1—N3i90.00 (9)C8—C9—H9B109.5
N2i—Co1—N3i90.62 (9)H9A—C9—H9B109.5
N2—Co1—N3i89.38 (9)C8—C9—H9C109.5
N3—Co1—N3i180.0H9A—C9—H9C109.5
C1—N1—N2112.5 (2)H9B—C9—H9C109.5
C8—N2—N1114.6 (2)C8—C10—H10A109.5
C8—N2—Co1134.5 (2)C8—C10—H10B109.5
N1—N2—Co1110.84 (16)H10A—C10—H10B109.5
C15—N3—C11116.4 (3)C8—C10—H10C109.5
C15—N3—Co1122.3 (2)H10A—C10—H10C109.5
C11—N3—Co1121.4 (2)H10B—C10—H10C109.5
C1—O1—Co1114.58 (18)N3—C11—C12123.3 (3)
C3—O2—H2109.5N3—C11—H11118.4
O1—C1—N1125.4 (3)C12—C11—H11118.4
O1—C1—C2119.1 (3)C11—C12—C13119.6 (3)
N1—C1—C2115.5 (3)C11—C12—H12120.2
C7—C2—C3118.3 (3)C13—C12—H12120.2
C7—C2—C1119.5 (3)C14—C13—C12118.2 (3)
C3—C2—C1122.2 (3)C14—C13—H13120.9
O2—C3—C4117.8 (3)C12—C13—H13120.9
O2—C3—C2122.6 (3)C13—C14—C15118.7 (3)
C4—C3—C2119.6 (4)C13—C14—H14120.6
C5—C4—C3120.3 (4)C15—C14—H14120.6
C5—C4—H4119.8N3—C15—C14123.8 (3)
C3—C4—H4119.8N3—C15—H15118.1
C4—C5—C6121.0 (4)C14—C15—H15118.1
C4—C5—H5119.5
C1—N1—N2—C8−178.4 (3)N1—C1—C2—C7−173.4 (3)
C1—N1—N2—Co12.4 (3)O1—C1—C2—C3−174.8 (3)
O1—Co1—N2—C8178.1 (3)N1—C1—C2—C35.3 (4)
O1i—Co1—N2—C8−1.9 (3)C7—C2—C3—O2178.2 (3)
N3—Co1—N2—C888.3 (3)C1—C2—C3—O2−0.5 (5)
N3i—Co1—N2—C8−91.7 (3)C7—C2—C3—C4−0.3 (5)
O1—Co1—N2—N1−2.81 (16)C1—C2—C3—C4−179.0 (3)
O1i—Co1—N2—N1177.19 (16)O2—C3—C4—C5−177.3 (3)
N3—Co1—N2—N1−92.66 (17)C2—C3—C4—C51.2 (5)
N3i—Co1—N2—N187.34 (17)C3—C4—C5—C6−1.0 (6)
O1—Co1—N3—C15120.1 (2)C4—C5—C6—C7−0.1 (6)
O1i—Co1—N3—C15−59.9 (2)C5—C6—C7—C21.0 (6)
N2i—Co1—N3—C1516.7 (2)C3—C2—C7—C6−0.8 (5)
N2—Co1—N3—C15−163.3 (2)C1—C2—C7—C6177.9 (3)
O1—Co1—N3—C11−61.3 (2)N1—N2—C8—C9179.7 (3)
O1i—Co1—N3—C11118.7 (2)Co1—N2—C8—C9−1.2 (5)
N2i—Co1—N3—C11−164.6 (2)N1—N2—C8—C100.0 (4)
N2—Co1—N3—C1115.4 (2)Co1—N2—C8—C10179.1 (2)
N2i—Co1—O1—C1−177.13 (19)C15—N3—C11—C120.1 (5)
N2—Co1—O1—C12.87 (19)Co1—N3—C11—C12−178.6 (3)
N3—Co1—O1—C193.5 (2)N3—C11—C12—C130.5 (6)
N3i—Co1—O1—C1−86.5 (2)C11—C12—C13—C14−0.6 (6)
Co1—O1—C1—N1−2.7 (4)C12—C13—C14—C150.1 (5)
Co1—O1—C1—C2177.38 (18)C11—N3—C15—C14−0.7 (5)
N2—N1—C1—O10.0 (4)Co1—N3—C15—C14178.0 (3)
N2—N1—C1—C2180.0 (2)C13—C14—C15—N30.6 (5)
O1—C1—C2—C76.5 (4)

Symmetry codes: (i) −x, −y+1, −z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O2—H2···N10.821.812.536 (3)147
C7—H7···O10.932.462.782 (4)100
C11—H11···N20.932.563.157 (4)123
C9—H9A···O1i0.962.233.159 (4)164
C15—H15···N2i0.932.543.137 (4)123

Symmetry codes: (i) −x, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BG2240).

References

  • Armstrong, C. M., Bernhardt, P. V., Chin, P. & Richardson, D. R. (2003). Eur. J. Inorg. Chem. pp. 1145–1156.
  • Kang, W.-J., Dou, J.-M., Li, D.-C. & Wang, D.-Q. (2007). Acta Cryst. E63, o3328.
  • Kraudelt, H., Ludwig, E., Schilde, U. & Uhlemann, E. (1996). Z. Naturforsch. Teil B, 51, 563–566.
  • Liu, M.-L., Dou, J.-M., Wang, D.-Q. & Li, D.-C. (2005). Acta Cryst. E61, m1366–m1367.
  • Matoga, D., Szklarzewicz, J., Stadnicka, K. & Shongwe, M. S. (2007). Inorg. Chem. pp. 9042–9044. [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siemens (1996). SMART and SAINT Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography