PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 April 1; 65(Pt 4): m364–m365.
Published online 2009 March 6. doi:  10.1107/S1600536809007053
PMCID: PMC2968838

Tetra­quabis(5-fluoro­saccharinato)nickel(II)

Abstract

In the centrosymmetric title complex, [Ni(C7H3FNO3S)2(H2O)4], the NiII atom exhibits a slightly distorted trans-NiN2O4 octa­hedral coordination. The nitro­gen donors are provided by two 5-fluoro­saccharinate ligands and the oxygen donors are provided by four water mol­ecules. The crystal structure features O—H(...)O and bifurcated O—H(...)(F,O) hydrogen bonds, the latter involving the F atom of the 5-fluoro­saccharinate ligand.

Related literature

For a related structure; see: Haider et al. (1983 [triangle]). For background, see: Falvello et al. (2001 [triangle]); Khalil et al. (2005 [triangle]); Plenio (1997 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m364-scheme1.jpg

Experimental

Crystal data

  • [Ni(C7H3FNO3S)2(H2O)4]
  • M r = 531.10
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m364-efi1.jpg
  • a = 6.9649 (3) Å
  • b = 8.0484 (3) Å
  • c = 9.5877 (4) Å
  • α = 101.780 (1)°
  • β = 105.983 (1)°
  • γ = 110.973 (1)°
  • V = 454.18 (3) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 1.38 mm−1
  • T = 150 K
  • 0.22 × 0.18 × 0.08 mm

Data collection

  • Bruker SMART APEX CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2003 [triangle]) T min = 0.887, T max = 1.000 (expected range = 0.794–0.895)
  • 6861 measured reflections
  • 1858 independent reflections
  • 1769 reflections with I > 2σ(I)
  • R int = 0.022

Refinement

  • R[F 2 > 2σ(F 2)] = 0.024
  • wR(F 2) = 0.065
  • S = 1.06
  • 1858 reflections
  • 161 parameters
  • Only H-atom displacement parameters refined
  • Δρmax = 0.38 e Å−3
  • Δρmin = −0.37 e Å−3

Data collection: SMART (Bruker, 2003 [triangle]); cell refinement: SAINT-Plus (Bruker, 2003 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: DIAMOND (Brandenburg, 2005 [triangle]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008 [triangle]).

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809007053/hb2907sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809007053/hb2907Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

Financial support from the National Science Foundation, awards CHE-0314164 and CHE-0315152, is gratefully acknowledged.

supplementary crystallographic information

Comment

The study of metal saccharinate complexes has been of current interest with respect to their incorporation into novel coordination polymers (Falvello et al., 2001). As a continuation of our own efforts in this area (Khalil et al., 2005), we have deemed it worthwhile to explore the solid state structures of metal organic compounds containing fluorinated saccharinates. The choice of fluorinated saccharinates stems from the novel types of interactions in which carbon bound fluorine may participate (Plenio, 1997). Our initial studies have led to the preparation of the title nickel complex (I) that contains 5-fluorosaccharinate (5-fsacch) as an anionic ligand.

The crystal structure of (I) consists of monomeric Ni(5-fsacch)2(H2O)4 molecular units, as shown in Figure 1. The NiII atom, which lies on an inversion center, is octahedrally coordinated by a pair of trans N atoms from two equivalent 5-fsacch ligands, and by four O atoms from two pairs that contain equivalent water molecules (Table 1).

The average Ni—N and Ni—O bond distances in (I) are 2.086 Å (1) and 2.076 (2) Å, respectively. By comparison to a similar structure, in (I) the average Ni—N distance is shorter whereas the average Ni—O distance is longer than their corresponding values in the previously reported nickel saccharinate complex, namely Ni(sacch)2(H2O)4.2(H2O) (II) (sacch = saccharinate) (Haider et al., 1983). In (II) the average Ni—N distance is 2.154 (1) Å, while the average Ni—O distance is 2.069 (2) Å. All angles in (I) are normal and are comparable to their corresponding values in (II).

The crystal structure in (I) features extensive hydrogen bonding (Table 2) in which both the carbonyl and sulfonyl O atoms of 5-fsacch, as well its carbon bound fluorine, act as hydrogen bond acceptors for the water H atoms, as shown in Fig. 2. This hydrogen bonding scheme is different from that of (II) for two major reasons. First, there is the presence of the previously mentioned C—F···H hydrogen bonding in (I) that is obviously absent in (II). Second, in (II) there exists hydrogen bonding involving lattice water molecules, which because of their absence in (I) precludes such interactions.

Experimental

All chemicals and solvents were purchased from commercial sources and used without further purification. The synthesis of sodium 5-fluorosaccharinate will be described elsewhere. A 10 ml solution of sodium 5-fluorosaccharinate (0.10 mmol) was added dropwise to a 10.0 ml solution of nickel(II) chloride tetrahydrate (0.050 mmol). Light blue, block-like crystals of (I) were formed in about three weeks by slow evaporation after the solution volume was reduced to 5.0 ml under ambient conditions.

Refinement

Hydrogen atoms bonded to carbon were placed in geometrically idealized positions and included as riding atoms with refined isotropic displacement parameters. The water H atoms were located in difference maps and refined freely.

Figures

Fig. 1.
The coordination environment of Ni(II) in (I), with the atom-labeling scheme. The H atoms of 5-fsacch are omitted for clarity. Displacement ellipsoids for nonhydrogen atoms are drawn at the 50% probability level. Hydrogen bonds are represented by dashed ...
Fig. 2.
View of the crystal packing in (I). All H atoms except for those of water are omitted for clarity. Hydrogen bonds are represented by dashed lines.

Crystal data

[Ni(C7H3FNO3S)2(H2O)4]Z = 1
Mr = 531.10F(000) = 270
Triclinic, P1Dx = 1.942 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.9649 (3) ÅCell parameters from 4507 reflections
b = 8.0484 (3) Åθ = 2.4–26.4°
c = 9.5877 (4) ŵ = 1.38 mm1
α = 101.780 (1)°T = 150 K
β = 105.983 (1)°Block, light blue
γ = 110.973 (1)°0.22 × 0.18 × 0.08 mm
V = 454.18 (3) Å3

Data collection

Bruker SMART APEX CCD diffractometer1858 independent reflections
Radiation source: fine-focus sealed tube1769 reflections with I > 2σ(I)
graphiteRint = 0.022
ω scansθmax = 26.4°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Bruker, 2003)h = −8→8
Tmin = 0.887, Tmax = 1.000k = −10→10
6861 measured reflectionsl = −11→11

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: mixed
wR(F2) = 0.065Only H-atom displacement parameters refined
S = 1.06w = 1/[σ2(Fo2) + (0.0376P)2 + 0.2342P] where P = (Fo2 + 2Fc2)/3
1858 reflections(Δ/σ)max < 0.001
161 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = −0.37 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ni10.50000.50000.50000.01450 (11)
S1−0.01342 (6)0.32955 (6)0.24583 (5)0.01495 (12)
C10.2752 (3)0.2997 (2)0.1523 (2)0.0176 (4)
C20.0749 (3)0.2377 (2)0.0098 (2)0.0164 (3)
C30.0542 (3)0.1736 (2)−0.1416 (2)0.0179 (3)
H30.17240.1621−0.16700.020 (5)*
C4−0.1482 (3)0.1274 (2)−0.2531 (2)0.0179 (3)
C5−0.3263 (3)0.1414 (3)−0.2223 (2)0.0217 (4)
H5−0.46130.1090−0.30410.036 (6)*
C6−0.3043 (3)0.2036 (3)−0.0695 (2)0.0209 (4)
H6−0.42320.2132−0.04380.026 (6)*
C7−0.1013 (3)0.2507 (2)0.04337 (19)0.0169 (3)
F1−0.17280 (17)0.06728 (16)−0.40248 (12)0.0230 (2)
N10.2420 (2)0.3605 (2)0.28345 (17)0.0172 (3)
O10.4490 (2)0.2954 (2)0.15047 (15)0.0258 (3)
O2−0.1302 (2)0.18308 (18)0.29833 (15)0.0210 (3)
O3−0.01877 (19)0.50819 (17)0.30498 (14)0.0193 (3)
O40.2988 (2)0.3398 (2)0.59836 (16)0.0197 (3)
H4A0.190 (5)0.249 (4)0.535 (4)0.048 (8)*
H4B0.254 (5)0.396 (4)0.646 (3)0.043 (8)*
O50.4047 (2)0.71025 (18)0.54925 (17)0.0187 (3)
H5A0.284 (5)0.685 (4)0.490 (3)0.046 (8)*
H5B0.412 (4)0.742 (4)0.637 (3)0.039 (7)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ni10.01254 (16)0.01878 (18)0.01260 (17)0.00792 (13)0.00498 (12)0.00392 (12)
S10.0128 (2)0.0187 (2)0.0134 (2)0.00758 (17)0.00549 (16)0.00357 (17)
C10.0179 (8)0.0214 (9)0.0152 (8)0.0101 (7)0.0070 (7)0.0056 (7)
C20.0156 (8)0.0175 (8)0.0163 (9)0.0077 (7)0.0058 (7)0.0058 (7)
C30.0183 (8)0.0192 (8)0.0183 (9)0.0092 (7)0.0086 (7)0.0066 (7)
C40.0228 (8)0.0174 (8)0.0126 (8)0.0079 (7)0.0073 (7)0.0043 (7)
C50.0173 (8)0.0242 (9)0.0189 (9)0.0081 (7)0.0031 (7)0.0052 (7)
C60.0168 (8)0.0261 (9)0.0190 (9)0.0096 (7)0.0070 (7)0.0052 (7)
C70.0180 (8)0.0181 (8)0.0135 (8)0.0079 (7)0.0063 (7)0.0030 (7)
F10.0246 (5)0.0294 (6)0.0125 (5)0.0113 (5)0.0064 (4)0.0040 (4)
N10.0129 (6)0.0241 (8)0.0148 (7)0.0100 (6)0.0050 (6)0.0040 (6)
O10.0188 (6)0.0437 (8)0.0177 (7)0.0188 (6)0.0073 (5)0.0061 (6)
O20.0216 (6)0.0228 (7)0.0200 (7)0.0090 (5)0.0109 (5)0.0073 (5)
O30.0170 (6)0.0202 (6)0.0196 (6)0.0096 (5)0.0062 (5)0.0030 (5)
O40.0184 (6)0.0213 (7)0.0188 (7)0.0082 (6)0.0087 (6)0.0044 (6)
O50.0170 (6)0.0229 (7)0.0163 (7)0.0105 (5)0.0060 (5)0.0042 (5)

Geometric parameters (Å, °)

Ni1—O5i2.0440 (13)C2—C31.385 (2)
Ni1—O52.0440 (13)C3—C41.379 (2)
Ni1—N12.0856 (14)C3—H30.9500
Ni1—N1i2.0856 (14)C4—F11.355 (2)
Ni1—O42.1084 (13)C4—C51.388 (2)
Ni1—O4i2.1084 (13)C5—C61.394 (3)
S1—O21.4443 (13)C5—H50.9500
S1—O31.4515 (13)C6—C71.385 (2)
S1—N11.6277 (14)C6—H60.9500
S1—C71.7635 (17)O4—H4A0.81 (3)
C1—O11.228 (2)O4—H4B0.78 (3)
C1—N11.366 (2)O5—H5A0.80 (3)
C1—C21.495 (2)O5—H5B0.81 (3)
C2—C71.385 (2)
O5i—Ni1—O5180.0C3—C2—C1127.30 (15)
O5i—Ni1—N187.50 (6)C4—C3—C2116.09 (15)
O5—Ni1—N192.50 (6)C4—C3—H3122.0
O5i—Ni1—N1i92.50 (6)C2—C3—H3122.0
O5—Ni1—N1i87.50 (6)F1—C4—C3117.60 (15)
N1—Ni1—N1i180.0F1—C4—C5118.11 (16)
O5i—Ni1—O488.53 (5)C3—C4—C5124.28 (17)
O5—Ni1—O491.47 (5)C4—C5—C6119.03 (16)
N1—Ni1—O490.65 (6)C4—C5—H5120.5
N1i—Ni1—O489.35 (6)C6—C5—H5120.5
O5i—Ni1—O4i91.47 (5)C7—C6—C5117.06 (16)
O5—Ni1—O4i88.53 (5)C7—C6—H6121.5
N1—Ni1—O4i89.35 (6)C5—C6—H6121.5
N1i—Ni1—O4i90.65 (6)C2—C7—C6122.86 (16)
O4—Ni1—O4i180.0C2—C7—S1107.03 (13)
O2—S1—O3114.08 (7)C6—C7—S1130.10 (13)
O2—S1—N1110.96 (8)C1—N1—S1111.66 (12)
O3—S1—N1110.42 (7)C1—N1—Ni1122.66 (11)
O2—S1—C7111.32 (8)S1—N1—Ni1125.40 (8)
O3—S1—C7112.14 (8)Ni1—O4—H4A113 (2)
N1—S1—C796.63 (8)Ni1—O4—H4B113 (2)
O1—C1—N1124.25 (16)H4A—O4—H4B106 (3)
O1—C1—C2123.43 (16)Ni1—O5—H5A113 (2)
N1—C1—C2112.32 (14)Ni1—O5—H5B113.5 (19)
C7—C2—C3120.66 (16)H5A—O5—H5B110 (3)
C7—C2—C1112.04 (15)
O1—C1—C2—C7177.99 (17)O3—S1—C7—C6−61.72 (19)
N1—C1—C2—C7−1.9 (2)N1—S1—C7—C6−176.96 (18)
O1—C1—C2—C3−2.1 (3)O1—C1—N1—S1−174.70 (15)
N1—C1—C2—C3178.04 (16)C2—C1—N1—S15.15 (19)
C7—C2—C3—C40.8 (3)O1—C1—N1—Ni111.1 (3)
C1—C2—C3—C4−179.07 (16)C2—C1—N1—Ni1−169.10 (11)
C2—C3—C4—F1178.87 (14)O2—S1—N1—C1110.32 (13)
C2—C3—C4—C50.0 (3)O3—S1—N1—C1−122.18 (13)
F1—C4—C5—C6−179.76 (16)C7—S1—N1—C1−5.56 (14)
C3—C4—C5—C6−0.9 (3)O2—S1—N1—Ni1−75.62 (11)
C4—C5—C6—C70.9 (3)O3—S1—N1—Ni151.87 (12)
C3—C2—C7—C6−0.7 (3)C7—S1—N1—Ni1168.50 (10)
C1—C2—C7—C6179.18 (16)O5i—Ni1—N1—C1−48.82 (14)
C3—C2—C7—S1178.11 (14)O5—Ni1—N1—C1131.18 (14)
C1—C2—C7—S1−1.98 (18)O4—Ni1—N1—C1−137.32 (14)
C5—C6—C7—C2−0.2 (3)O4i—Ni1—N1—C142.68 (14)
C5—C6—C7—S1−178.74 (14)O5i—Ni1—N1—S1137.74 (10)
O2—S1—C7—C2−111.27 (13)O5—Ni1—N1—S1−42.26 (10)
O3—S1—C7—C2119.56 (12)O4—Ni1—N1—S149.24 (10)
N1—S1—C7—C24.32 (14)O4i—Ni1—N1—S1−130.76 (10)
O2—S1—C7—C667.46 (19)

Symmetry codes: (i) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O4—H4A···O20.81 (3)2.51 (3)3.1436 (19)137 (3)
O4—H4A···F1ii0.81 (3)2.54 (3)3.0910 (19)127 (3)
O4—H4B···O3iii0.78 (3)2.17 (3)2.8985 (18)158 (3)
O5—H5A···O30.80 (3)2.10 (3)2.8346 (18)155 (3)
O5—H5A···F1iv0.80 (3)2.59 (3)3.1050 (17)124 (2)
O5—H5B···O1i0.81 (3)2.13 (3)2.793 (2)139 (2)
O5—H5B···O2iii0.81 (3)2.44 (3)2.9541 (18)122 (2)

Symmetry codes: (ii) −x, −y, −z; (iii) −x, −y+1, −z+1; (iv) −x, −y+1, −z; (i) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2907).

References

  • Brandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  • Bruker (2003). SMART, SAINT-Plus and SADABS Bruker AXS, Inc., Madison, Wisconsin, USA.
  • Falvello, L. R., Gomez, J., Pascual, I., Tomas, M., Urriolabeitia, E. P. & Schultz, A. J. (2001). Inorg. Chem.40, 4455–4463. [PubMed]
  • Haider, S. Z., Malik, K. M. A., Ahmed, K. J., Hess, H., Riffel, H. & Hursthouse, M. B. (1983). Inorg. Chim. Acta, 72, 21–27.
  • Khalil, S., Peterson, L. Jr, Goforth, A. M., Hansen, T. J., Smith, M. D. & zur Loye, H.-C. (2005). J. Chem. Crystallogr.35, 405–411.
  • Plenio, H. (1997). Chem. Rev.97, 3363–3384. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography