PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 April 1; 65(Pt 4): m455–m456.
Published online 2009 March 28. doi:  10.1107/S160053680901071X
PMCID: PMC2968836

Bis(2,2′:6′,2′′-terpyridine)cobalt(II) bis­(tricyano­methanide)

Abstract

The title complex, [Co(C15H11N3)2](C4N3)2, is built up from discrete [Co(terpy)2]2+ cations (terpy is 2,2′:6′,2′′-terpyridine) and [C(CN)3] anions. In the cation, the CoII atom is coordinated by two terpy mol­ecules, giving a distorted octa­hedral geometry. The tricyano­methanide anions are not directly coordinated to the CoII atom, but some weak C—H(...)N hydrogen bonds involving the terminal N atoms of the tricyaomethanide ions and the terpyridine H atoms link anions and cations building a three-dimensional network.

Related literature

For the structural characteristics and magnetic properties of tricyano­methanide coordination polymers, see: Batten et al. (1998 [triangle], 2000 [triangle]); Batten & Murray (2003 [triangle]); Miller & Manson (2001 [triangle]); Manson et al. (1998 [triangle], 2000 [triangle]); Manson & Schlueter (2004 [triangle]); Feyerherm et al. (2003 [triangle], 2004 [triangle]); Abrahams et al. (2003 [triangle]); Hoshino et al. (1999 [triangle]); Yuste et al. (2008 [triangle]); Luo et al. (2008 [triangle]). For Co—N(terpy) distances in other cobalt–terpyridine complexes, see: Indumathy et al. (2007 [triangle]). For bond distances and bond angles in other tricyano­methanide complexes, see: Hoshino et al. (1999 [triangle]); Batten et al. (1999 [triangle]). For weak C—H(...)N inter­actions, see: Nardelli (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m455-scheme1.jpg

Experimental

Crystal data

  • [Co(C15H11N3)2](C4N3)2
  • M r = 705.61
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m455-efi1.jpg
  • a = 9.042 (3) Å
  • b = 9.167 (3) Å
  • c = 40.340 (14) Å
  • β = 91.163 (6)°
  • V = 3343 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.56 mm−1
  • T = 293 K
  • 0.20 × 0.15 × 0.10 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.896, T max = 0.946
  • 13582 measured reflections
  • 5880 independent reflections
  • 3009 reflections with I > 2σ(I)
  • R int = 0.093

Refinement

  • R[F 2 > 2σ(F 2)] = 0.061
  • wR(F 2) = 0.106
  • S = 0.96
  • 5880 reflections
  • 460 parameters
  • H-atom parameters constrained
  • Δρmax = 0.27 e Å−3
  • Δρmin = −0.20 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 2000 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXL97

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680901071X/dn2438sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680901071X/dn2438Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This project is supported by the National Natural Science Foundation of China (20571086).

supplementary crystallographic information

Comment

Recently, coordination polymers constructed by tricyanomethanide (tcm) have attracted considerable interest due to their unique structure characteristics and fascinating magnetic properties (Batten et al., 2003; Miller et al., 2001; Feyerherm et al., 2003). Interestingly, most binary tcm complexes reveal a rutile-like structure (Manson et al., 2000, 1998; Hoshino et al., 1999; Feyerherm et al., 2004), except that a doubly interpenetrated (6,3) sheet was detected in Ag(tcm)2 (Abrahams et al., 2003). To elucidate the structure-properties relationship of tcm complexes, diverse co-ligands such as hexamethylenetetramine, 4,4-bipyridyl, 1,2-bi(4-pyridyl)ethane were introduced and the structures as well as magnetic properties of the modified complexes have been systematically investigated. Among the Cu(I) or Cd(II) tcm complexes with these co-ligands, numerous structure types range from doubly interpenetrated (4,4) sheet to three-dimensional rutile networks were observed (Batten et al., 2000, 1998). By contrast, adjustment of the Mn(II)-tcm binary system with 4,4-bipyridyl as co-ligands leads to the formation of a one dimensional chain-like structure (Manson et al., 2004). On the other hand, 2,2':6'2''-terpyridine (terpy) has three potential nitrogen donor atoms. However, a few tcm complexes with terpy as a co-ligand have ever been reported (Yuste et al., 2008; Luo et al., 2008). To further study the role of the nature of co-ligands on the structures and properties of tricyanomethanide complexes, we herein report the synthesis and crystal structure of the new tricyanomethanide complex [Co(terpy)2](C4N3) 2 (I).

In I the cobalt ion is bonded to six N atoms from two terpyridine molecules to define the cation part, in which the basal plane is formed by the three N atoms (N1, N2, N3) of one terpy ligand and one N atom (N5) of the other terpy ligand, the apical sites are occupied by two N atoms (N4 and N6) of the latter terpy ligand. The tricyanomethanide anions do not enter the inner coordination sphere, but are linked to the cation part via weak C-H···N interactions (Fig. 1). These weak C-H···N interactions (Nardelli, 1995) build up a three dimensional network (Table 1).

In I, the Co—N(terpy) distances are in the range from 1.858 (3)Å to 2.139 (3) Å, these value are similar to the corresponding distances observed in other cobalt-terpyridine complexes (Indumathy et al., 2007).

Each tricyanomethanide moiety is almost planar. Bond distances and bond angles within the anions are in good agreement with those found in other tricyanomethanide complexes (Hoshino et al., 1999; Batten et al., 1999).

Experimental

A 5 ml e thanol solution of terpyridine (0.10 mmol, 23.33 mg) and a 2 ml aqueous pink solution of cobalt nitrate (0.10 mmol, 29.10 mg) were mixed and stirred for 5 min, the mixed solution was deep-brown. To the mixture was added a 3 ml e thanol-water solution (EtOH:H2O = 2:1, V:V) of potassium tricyanomethanide (0.20 mmol, 25.83 mg). After stirring for another 5 min, the deep-brown solution was filtered and the filtrate was slowly evaporated in air. After two week, deep-brown block crystals of I were isolated in 17% yield. Anal: Calculated for C38H22CoN12: C 64.68%, H 3.14%, N 23.82%. Found C 64.84%, H 3.22%, N 23.95%.

Refinement

The H atoms were treated as riding on their parent atoms with C—H distances of 0.93 Å and Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
A view of the cation-anion pair in (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms not involved in hydrogen bondings have been omitted for clarity. H bonds are shown as dashed lines.

Crystal data

[Co(C15H11N3)2](C4N3)2F(000) = 1444
Mr = 705.61Dx = 1.402 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 925 reflections
a = 9.042 (3) Åθ = 2.3–17.9°
b = 9.167 (3) ŵ = 0.56 mm1
c = 40.340 (14) ÅT = 293 K
β = 91.163 (6)°Block, dark-brown
V = 3343 (2) Å30.20 × 0.15 × 0.10 mm
Z = 4

Data collection

Bruker SMART APEX CCD area-detector diffractometer5880 independent reflections
Radiation source: fine-focus sealed tube3009 reflections with I > 2σ(I)
graphiteRint = 0.093
[var phi] and ω scansθmax = 25.0°, θmin = 1.0°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −10→10
Tmin = 0.896, Tmax = 0.946k = −10→7
13582 measured reflectionsl = −41→47

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H-atom parameters constrained
S = 0.96w = 1/[σ2(Fo2) + (0.0281P)2] where P = (Fo2 + 2Fc2)/3
5880 reflections(Δ/σ)max = 0.001
460 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = −0.20 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Co10.50103 (6)0.82076 (6)0.873406 (12)0.04411 (18)
N10.5876 (3)1.0222 (4)0.87728 (8)0.0463 (9)
N20.4973 (3)0.8719 (4)0.82884 (7)0.0448 (9)
N30.4127 (3)0.6366 (3)0.85446 (8)0.0442 (9)
N40.2901 (4)0.9020 (3)0.88713 (8)0.0481 (9)
N50.4994 (4)0.7677 (3)0.91878 (7)0.0390 (8)
N60.7138 (3)0.7206 (3)0.87885 (8)0.0463 (9)
N70.7089 (6)1.5090 (7)0.78492 (11)0.125 (2)
N80.5165 (6)1.6925 (6)0.69117 (11)0.1123 (18)
N90.4373 (7)1.2455 (7)0.71648 (15)0.143 (2)
N10−0.1268 (5)0.3628 (5)0.98032 (11)0.0990 (16)
N110.3099 (6)0.3292 (7)0.93731 (12)0.134 (2)
N120.1971 (5)0.0363 (5)1.01956 (9)0.0799 (13)
C10.6312 (5)1.0933 (5)0.90478 (11)0.0591 (12)
H10.62091.04780.92520.071*
C20.6907 (5)1.2314 (6)0.90391 (13)0.0734 (15)
H20.72001.27830.92340.088*
C30.7061 (5)1.2981 (5)0.87393 (15)0.0823 (16)
H30.74641.39130.87280.099*
C40.6618 (5)1.2270 (5)0.84551 (12)0.0665 (14)
H40.67211.27130.82490.080*
C50.6023 (4)1.0899 (5)0.84780 (11)0.0495 (11)
C60.5480 (4)1.0029 (5)0.81958 (10)0.0502 (11)
C70.5449 (5)1.0430 (5)0.78661 (11)0.0687 (14)
H70.58231.13270.78010.082*
C80.4850 (5)0.9473 (6)0.76338 (11)0.0746 (15)
H80.48130.97300.74110.090*
C90.4313 (5)0.8148 (6)0.77329 (10)0.0677 (13)
H90.38990.75050.75790.081*
C100.4397 (4)0.7784 (5)0.80649 (10)0.0506 (12)
C110.3901 (4)0.6421 (5)0.82150 (10)0.0483 (11)
C120.3275 (5)0.5262 (5)0.80430 (11)0.0651 (13)
H120.31310.53160.78140.078*
C130.2866 (5)0.4027 (5)0.82127 (13)0.0782 (15)
H130.24440.32400.81000.094*
C140.3089 (5)0.3974 (5)0.85490 (13)0.0686 (14)
H140.28150.31570.86700.082*
C150.3725 (4)0.5155 (5)0.87038 (11)0.0553 (12)
H150.38870.51110.89320.066*
C160.1884 (5)0.9738 (5)0.86914 (10)0.0570 (12)
H160.20670.99200.84690.068*
C170.0580 (5)1.0218 (5)0.88197 (11)0.0650 (13)
H17−0.00961.07340.86880.078*
C180.0289 (5)0.9927 (5)0.91433 (12)0.0665 (14)
H18−0.05971.02260.92350.080*
C190.1318 (5)0.9189 (5)0.93328 (10)0.0569 (12)
H190.11400.89880.95540.068*
C200.2617 (5)0.8748 (4)0.91917 (10)0.0447 (11)
C210.3810 (5)0.7973 (4)0.93730 (10)0.0441 (10)
C220.3758 (5)0.7565 (5)0.97017 (10)0.0575 (12)
H220.29490.78050.98290.069*
C230.4929 (6)0.6797 (5)0.98366 (10)0.0651 (13)
H230.49130.65131.00580.078*
C240.6118 (5)0.6446 (4)0.96480 (10)0.0521 (12)
H240.68890.58840.97350.063*
C250.6151 (4)0.6943 (4)0.93254 (10)0.0436 (10)
C260.7392 (4)0.6738 (4)0.91018 (10)0.0434 (10)
C270.8725 (5)0.6127 (4)0.91970 (11)0.0582 (12)
H270.88940.58400.94160.070*
C280.9802 (5)0.5945 (5)0.89658 (13)0.0671 (14)
H281.07000.55160.90260.081*
C290.9545 (5)0.6399 (5)0.86442 (12)0.0709 (14)
H291.02570.62820.84830.085*
C300.8198 (5)0.7032 (5)0.85694 (10)0.0578 (12)
H300.80220.73550.83540.069*
C310.6441 (6)1.4961 (6)0.76014 (16)0.0919 (18)
C320.5614 (6)1.4782 (7)0.73069 (14)0.0798 (16)
C330.5377 (6)1.5952 (8)0.70963 (15)0.0877 (18)
C340.4954 (7)1.3530 (9)0.72316 (15)0.095 (2)
C35−0.0143 (7)0.3069 (6)0.98015 (11)0.0685 (14)
C360.1248 (6)0.2411 (5)0.97914 (11)0.0605 (13)
C370.2264 (7)0.2885 (6)0.95613 (13)0.0851 (17)
C380.1641 (5)0.1271 (6)1.00156 (12)0.0623 (14)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Co10.0432 (4)0.0457 (3)0.0434 (3)0.0000 (3)0.0007 (2)0.0009 (3)
N10.043 (2)0.051 (2)0.044 (2)0.0019 (18)−0.0023 (17)0.0019 (19)
N20.043 (2)0.049 (2)0.043 (2)−0.0044 (18)−0.0004 (17)−0.0033 (18)
N30.040 (2)0.049 (2)0.044 (2)−0.0012 (17)0.0030 (17)−0.0019 (18)
N40.047 (2)0.052 (2)0.045 (2)0.0024 (18)0.0013 (18)−0.0024 (18)
N50.038 (2)0.038 (2)0.041 (2)−0.0004 (17)0.0005 (17)0.0006 (16)
N60.043 (2)0.047 (2)0.049 (2)−0.0055 (17)0.0023 (18)0.0000 (18)
N70.109 (5)0.181 (6)0.084 (4)0.013 (4)−0.007 (3)0.006 (4)
N80.137 (5)0.114 (5)0.087 (4)0.011 (4)0.004 (3)−0.002 (3)
N90.137 (6)0.116 (5)0.176 (6)−0.024 (4)−0.028 (4)0.016 (4)
N100.082 (4)0.086 (4)0.129 (4)0.016 (3)0.010 (3)0.036 (3)
N110.106 (4)0.194 (6)0.104 (4)−0.018 (4)0.023 (3)0.068 (4)
N120.090 (4)0.076 (3)0.073 (3)0.004 (3)0.001 (2)0.013 (2)
C10.054 (3)0.063 (3)0.060 (3)0.004 (3)−0.008 (2)0.003 (3)
C20.062 (4)0.062 (4)0.097 (4)−0.002 (3)−0.010 (3)−0.019 (3)
C30.073 (4)0.050 (3)0.123 (5)−0.010 (3)−0.008 (3)−0.008 (4)
C40.062 (4)0.053 (3)0.084 (4)−0.003 (3)−0.003 (3)0.009 (3)
C50.036 (3)0.043 (3)0.069 (3)−0.001 (2)0.000 (2)0.011 (3)
C60.048 (3)0.056 (3)0.046 (3)0.002 (2)0.000 (2)0.003 (3)
C70.076 (4)0.071 (4)0.059 (3)−0.006 (3)0.004 (3)0.019 (3)
C80.076 (4)0.096 (4)0.053 (3)−0.001 (3)0.002 (3)0.015 (3)
C90.075 (4)0.082 (4)0.046 (3)−0.008 (3)−0.003 (2)0.002 (3)
C100.052 (3)0.063 (3)0.037 (3)0.001 (2)0.001 (2)0.002 (2)
C110.042 (3)0.055 (3)0.047 (3)0.004 (2)0.002 (2)−0.007 (2)
C120.069 (4)0.071 (4)0.055 (3)−0.009 (3)−0.002 (3)−0.018 (3)
C130.078 (4)0.068 (4)0.089 (4)−0.020 (3)−0.003 (3)−0.014 (3)
C140.070 (4)0.053 (3)0.082 (4)−0.015 (3)0.001 (3)0.002 (3)
C150.048 (3)0.058 (3)0.060 (3)−0.005 (3)0.007 (2)0.004 (3)
C160.059 (4)0.065 (3)0.047 (3)0.010 (3)0.002 (3)0.003 (2)
C170.055 (4)0.077 (4)0.063 (3)0.015 (3)−0.011 (3)0.002 (3)
C180.048 (3)0.085 (4)0.066 (3)0.013 (3)0.003 (3)−0.012 (3)
C190.050 (3)0.071 (3)0.050 (3)0.005 (3)0.000 (3)−0.015 (2)
C200.043 (3)0.045 (3)0.047 (3)0.003 (2)0.002 (2)−0.005 (2)
C210.049 (3)0.040 (3)0.043 (3)−0.004 (2)0.003 (2)0.000 (2)
C220.061 (3)0.059 (3)0.053 (3)0.001 (3)0.013 (2)0.004 (2)
C230.072 (4)0.074 (3)0.050 (3)0.003 (3)0.004 (3)0.014 (3)
C240.059 (3)0.044 (3)0.053 (3)0.002 (2)−0.005 (2)0.007 (2)
C250.044 (3)0.038 (2)0.048 (3)−0.006 (2)0.000 (2)−0.002 (2)
C260.041 (3)0.036 (2)0.053 (3)0.001 (2)−0.006 (2)−0.002 (2)
C270.048 (3)0.060 (3)0.066 (3)0.002 (3)−0.003 (3)0.003 (2)
C280.044 (3)0.059 (3)0.098 (4)0.006 (2)−0.001 (3)0.000 (3)
C290.056 (4)0.071 (4)0.085 (4)0.003 (3)0.017 (3)0.001 (3)
C300.061 (3)0.055 (3)0.058 (3)−0.005 (3)0.009 (3)−0.001 (2)
C310.078 (5)0.112 (5)0.086 (5)0.005 (4)0.013 (4)−0.001 (4)
C320.072 (4)0.095 (5)0.072 (4)0.001 (4)0.000 (3)0.008 (4)
C330.088 (5)0.107 (6)0.068 (4)0.001 (4)0.002 (4)−0.021 (4)
C340.075 (5)0.114 (7)0.096 (5)−0.006 (4)−0.007 (4)0.008 (5)
C350.082 (4)0.056 (4)0.068 (3)−0.003 (3)0.002 (3)0.014 (3)
C360.069 (4)0.060 (3)0.053 (3)−0.006 (3)−0.001 (3)0.011 (3)
C370.081 (4)0.102 (5)0.072 (4)−0.003 (4)−0.011 (3)0.024 (3)
C380.065 (4)0.067 (4)0.056 (3)−0.009 (3)0.005 (3)−0.007 (3)

Geometric parameters (Å, °)

Co1—N21.858 (3)C10—C111.463 (5)
Co1—N51.894 (3)C11—C121.384 (5)
Co1—N12.011 (3)C12—C131.377 (6)
Co1—N32.012 (3)C12—H120.9300
Co1—N42.131 (3)C13—C141.368 (5)
Co1—N62.139 (3)C13—H130.9300
N1—C11.339 (5)C14—C151.370 (5)
N1—C51.350 (5)C14—H140.9300
N2—C61.341 (5)C15—H150.9300
N2—C101.342 (4)C16—C171.370 (5)
N3—C151.337 (5)C16—H160.9300
N3—C111.342 (4)C17—C181.363 (5)
N4—C161.334 (4)C17—H170.9300
N4—C201.346 (4)C18—C191.371 (5)
N5—C211.346 (4)C18—H180.9300
N5—C251.354 (4)C19—C201.376 (5)
N6—C301.326 (5)C19—H190.9300
N6—C261.350 (4)C20—C211.473 (5)
N7—C311.155 (6)C21—C221.379 (5)
N8—C331.176 (7)C22—C231.375 (5)
N9—C341.146 (7)C22—H220.9300
N10—C351.139 (6)C23—C241.368 (5)
N11—C371.144 (6)C23—H230.9300
N12—C381.141 (5)C24—C251.379 (5)
C1—C21.376 (6)C24—H240.9300
C1—H10.9300C25—C261.466 (5)
C2—C31.365 (6)C26—C271.377 (5)
C2—H20.9300C27—C281.372 (5)
C3—C41.371 (5)C27—H270.9300
C3—H30.9300C28—C291.378 (5)
C4—C51.371 (5)C28—H280.9300
C4—H40.9300C29—C301.377 (6)
C5—C61.466 (5)C29—H290.9300
C6—C71.380 (5)C30—H300.9300
C7—C81.385 (6)C31—C321.400 (7)
C7—H70.9300C32—C341.327 (8)
C8—C91.370 (6)C32—C331.382 (7)
C8—H80.9300C35—C361.396 (6)
C9—C101.381 (5)C36—C371.389 (7)
C9—H90.9300C36—C381.423 (6)
N2—Co1—N5178.48 (14)C11—C12—H12120.2
N2—Co1—N180.96 (14)C14—C13—C12119.1 (4)
N5—Co1—N199.85 (13)C14—C13—H13120.5
N2—Co1—N381.07 (14)C12—C13—H13120.5
N5—Co1—N398.11 (13)C13—C14—C15118.4 (4)
N1—Co1—N3162.03 (14)C13—C14—H14120.8
N2—Co1—N499.46 (14)C15—C14—H14120.8
N5—Co1—N479.28 (14)N3—C15—C14123.6 (4)
N1—Co1—N490.45 (12)N3—C15—H15118.2
N3—Co1—N492.38 (12)C14—C15—H15118.2
N2—Co1—N6101.91 (13)N4—C16—C17122.8 (4)
N5—Co1—N679.36 (13)N4—C16—H16118.6
N1—Co1—N692.19 (12)C17—C16—H16118.6
N3—Co1—N691.61 (12)C18—C17—C16118.9 (4)
N4—Co1—N6158.61 (13)C18—C17—H17120.6
C1—N1—C5118.3 (4)C16—C17—H17120.6
C1—N1—Co1128.3 (3)C17—C18—C19119.3 (4)
C5—N1—Co1113.5 (3)C17—C18—H18120.4
C6—N2—C10121.0 (3)C19—C18—H18120.4
C6—N2—Co1119.7 (3)C18—C19—C20119.3 (4)
C10—N2—Co1119.2 (3)C18—C19—H19120.4
C15—N3—C11118.0 (3)C20—C19—H19120.4
C15—N3—Co1128.6 (3)N4—C20—C19121.6 (4)
C11—N3—Co1113.4 (3)N4—C20—C21114.4 (4)
C16—N4—C20118.1 (4)C19—C20—C21123.9 (4)
C16—N4—Co1129.9 (3)N5—C21—C22121.5 (4)
C20—N4—Co1112.0 (3)N5—C21—C20113.8 (4)
C21—N5—C25119.3 (3)C22—C21—C20124.7 (4)
C21—N5—Co1120.5 (3)C23—C22—C21118.6 (4)
C25—N5—Co1120.2 (3)C23—C22—H22120.7
C30—N6—C26118.3 (4)C21—C22—H22120.7
C30—N6—Co1130.1 (3)C24—C23—C22120.5 (4)
C26—N6—Co1111.6 (3)C24—C23—H23119.7
N1—C1—C2122.4 (4)C22—C23—H23119.7
N1—C1—H1118.8C23—C24—C25118.6 (4)
C2—C1—H1118.8C23—C24—H24120.7
C3—C2—C1118.8 (5)C25—C24—H24120.7
C3—C2—H2120.6N5—C25—C24121.3 (4)
C1—C2—H2120.6N5—C25—C26114.0 (4)
C2—C3—C4119.6 (5)C24—C25—C26124.7 (4)
C2—C3—H3120.2N6—C26—C27121.5 (4)
C4—C3—H3120.2N6—C26—C25114.7 (4)
C5—C4—C3119.2 (5)C27—C26—C25123.8 (4)
C5—C4—H4120.4C28—C27—C26119.3 (4)
C3—C4—H4120.4C28—C27—H27120.4
N1—C5—C4121.7 (4)C26—C27—H27120.4
N1—C5—C6113.4 (4)C27—C28—C29119.7 (4)
C4—C5—C6124.9 (4)C27—C28—H28120.1
N2—C6—C7120.4 (4)C29—C28—H28120.1
N2—C6—C5112.4 (4)C30—C29—C28117.7 (4)
C7—C6—C5127.1 (4)C30—C29—H29121.2
C6—C7—C8118.9 (4)C28—C29—H29121.2
C6—C7—H7120.5N6—C30—C29123.5 (4)
C8—C7—H7120.5N6—C30—H30118.2
C9—C8—C7120.0 (4)C29—C30—H30118.2
C9—C8—H8120.0N7—C31—C32178.0 (7)
C7—C8—H8120.0C34—C32—C33117.9 (6)
C8—C9—C10119.0 (4)C34—C32—C31121.7 (6)
C8—C9—H9120.5C33—C32—C31120.3 (6)
C10—C9—H9120.5N8—C33—C32178.5 (7)
N2—C10—C9120.7 (4)N9—C34—C32179.3 (8)
N2—C10—C11112.7 (4)N10—C35—C36178.2 (6)
C9—C10—C11126.6 (4)C37—C36—C35119.5 (4)
N3—C11—C12121.4 (4)C37—C36—C38119.6 (5)
N3—C11—C10113.6 (4)C35—C36—C38120.8 (4)
C12—C11—C10125.0 (4)N11—C37—C36179.2 (8)
C13—C12—C11119.5 (4)N12—C38—C36179.2 (6)
C13—C12—H12120.2

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C4—H4···N70.932.743.589 (7)153
C8—H8···N90.932.713.347 (8)126
C15—H15···N110.932.553.254 (6)133
C1—H1···N12i0.932.853.598 (6)138
C23—H23···N11i0.932.893.622 (6)136
C2—H2···N10ii0.932.773.670 (7)164
C29—H29···N9iii0.932.853.560 (8)134
C17—H17···N8iv0.932.653.395 (7)137
C13—H13···N8v0.932.653.379 (7)136
C18—H18···N12vi0.932.693.403 (6)134
C22—H22···N10vi0.932.513.231 (6)134
C19—H19···N12vii0.932.963.679 (6)135
C22—H22···N12vii0.932.923.645 (6)136
C24—H24···N10viii0.932.673.548 (6)158
C27—H27···N10viii0.932.573.350 (6)142

Symmetry codes: (i) −x+1, −y+1, −z+2; (ii) x+1, y+1, z; (iii) −x+3/2, y−1/2, −z+3/2; (iv) −x+1/2, y−1/2, −z+3/2; (v) −x+1/2, y−3/2, −z+3/2; (vi) −x, −y+1, −z+2; (vii) x, y+1, z; (viii) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2438).

References

  • Abrahams, B. F., Batten, S. R., Hoskins, B. F. & Robson, R. (2003). Inorg. Chem.42, 2654–2664. [PubMed]
  • Batten, S. R., Hoskins, B. F., Moubaraki, B., Murray, K. S. & Robson, R. (1999). J. Chem. Soc. Dalton Trans. pp. 2977–2986.
  • Batten, S. R., Hoskins, B. F. & Robson, R. (1998). Inorg. Chem.37, 3432–3434.
  • Batten, S. R., Hoskins, B. F. & Robson, R. (2000). Chem. Eur. J.6, 156–161. [PubMed]
  • Batten, S. R. & Murray, K. S. (2003). Coord. Chem. Rev.246, 103–130.
  • Bruker (2000). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Feyerherm, R., Loose, A., Landsgesell, S. & Manson, J. L. (2004). Inorg. Chem.43, 6633–6639. [PubMed]
  • Feyerherm, R., Loose, A. & Manson, J. L. (2003). J. Phys. Condens. Matter, 15, 663–673.
  • Hoshino, H., Iida, K., Kawamoto, T. & Mori, T. (1999). Inorg. Chem.38, 4229–4232.
  • Indumathy, R., Radhika, S., Kanthimathi, M., Weyhermuller, T. & Nair, B. U. (2007). J. Inorg. Biochem.101, 434–443. [PubMed]
  • Luo, J., Zhang, X.-R., Dai, W.-Q., Cui, L.-L. & Liu, B.-S. (2008). Acta Cryst. E64, m1322–m1323. [PMC free article] [PubMed]
  • Manson, J. L., Campana, C. & Miller, J. S. (1998). J. Chem. Soc. Chem. Commun. pp. 251–252.
  • Manson, J. L., Ressouche, E. & Miller, J. S. (2000). Inorg. Chem.39, 1135–1141. [PubMed]
  • Manson, J. L. & Schlueter, J. A. (2004). Inorg. Chim. Acta, 357, 3975–3979.
  • Miller, J. S. & Manson, J. L. (2001). Acc. Chem. Res.34, 563–570. [PubMed]
  • Nardelli, M. (1995). J. Appl. Cryst.28, 659.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Yuste, C., Armentano, D., Marino, N., Cañadillas-Delgado, L., Delgado, F. S., Ruiz-Pérez, C., Rillema, D. P., Lloret, F. & Julve, M. (2008). J. Chem. Soc. Dalton Trans. pp. 1583–1596. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography