PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 April 1; 65(Pt 4): o904.
Published online 2009 March 28. doi:  10.1107/S1600536809010897
PMCID: PMC2968835

2,2′-(2,2′-Biimidazole-1,1′-di­yl)diethanoic acid

Abstract

In the title compound, C10H10N4O4, the two imidazole rings adopt a trans conformation and are inclined to one another at a dihedral angle of 55.64 (4)°. In the crystal structure, mol­ecules are linked by inter­molecular O—H(...)N hydrogen bonds into chains running parallel to [010] and layers are formed from these by inter­molecular C—H(...)O hydrogen bonds. Additional C—H(...)O hydrogen bonds produce a three-dimensional network.

Related literature

For the use of 2,2′-biimidazole ligands in metal complex formation, see: Pereira et al. (2006 [triangle]); Ion et al. (2007 [triangle]). For related structures, see: Barnett et al. (1999 [triangle], 2002 [triangle]); Zhang & Liang (2009 [triangle]). For preparation of the starting material, see: Barnett et al. (1996 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o904-scheme1.jpg

Experimental

Crystal data

  • C10H10N4O4
  • M r = 250.22
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o904-efi1.jpg
  • a = 8.4327 (17) Å
  • b = 15.116 (3) Å
  • c = 16.702 (3) Å
  • V = 2129.0 (7) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.12 mm−1
  • T = 295 K
  • 0.51 × 0.27 × 0.2 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.961, T max = 0.978
  • 18907 measured reflections
  • 2436 independent reflections
  • 2159 reflections with I > 2σ(I)
  • R int = 0.026

Refinement

  • R[F 2 > 2σ(F 2)] = 0.032
  • wR(F 2) = 0.086
  • S = 1.05
  • 2436 reflections
  • 163 parameters
  • H-atom parameters constrained
  • Δρmax = 0.33 e Å−3
  • Δρmin = −0.21 e Å−3

Data collection: RAPID-AUTO (Rigaku, 1998 [triangle]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809010897/sj2599sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809010897/sj2599Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This project was sponsored by the Scientific Research Foundation of the State Education Ministry for Returned Overseas Chinese Scholars (2006331), the Critical Projects in Science and Technology Department of Zhejiang Province (2007 C21113), the Education Committee of Zhejiang Province (20061696), the Natural Science Foundation of Ningbo City (2007 A610021), the K. C. Wong Magna Fund in Ningbo University and Ningbo University (2005062). We thank Mr W. Xu for collecting the crystal data.

supplementary crystallographic information

Comment

2,2'-Biimidazole (H2biim) derivatives as versatile ligands are widely used in the construction of metal complexes (Pereira et al., 2006; Ion et al., 2007). Here, we report the synthesis and crystal structure of the title compound. As shown in Fig.1, the two imidazole rings adopt a trans conformation and are inclined to one another at dihedral angle of 55.64 (4)°. while most unconjugated disubstituted biimidazole derivatives show an almost coplanar orientation of the two imidazole rings (Barnett, et al., 1999, 2002). This is probably due to the presence of the strong intermolecular O–H···N hydrogen bonds as observed before (Zhang & Liang, 2009). The values of the C1—N1—C4—C5 and C6—N3—C9—C10 torsion angles are -119.21 (11)° and -111.87 (12)°, respectively.

In the crystal, molecules are linked by intermolecular O–H···N hydrogen bonds into chains running parallel to [010] (Table 1, Fig.2). The chains are linked by intermolecular C–H···O hydrogen bonds into layers. The layers are further held together via C–H···O hydrogen bonds into a three-dimensional network.

Experimental

1,1'-Di(cyanomethyl)-2,2'-biimidazole (Barnett et al., 1996) (0.5 g, 2.36 mmol) was dissolved in 1 M aqueous sulfuric acid (50 ml) and heated at 100°C for 6 h before cooling to room temperature. A white precipitate of the title compound was obtained by adjusting pH to 5, filtered, washed with water, and finally dried in vacuo (yield: 0.35 g, 59.4%). The solid was dissolved in hot N,N-dimethylformamide and cooled to room temperaure slowly to afford colorless block-like crystals.

Refinement

H atoms bonded to C atoms were placed in geometrically calculated positions and were refined using a riding model, with Uiso(H) = 1.2 Ueq(C). H atoms attached to O atoms were found in a difference Fourier synthesis and were refined using a riding model, with the O—H distances fixed as initially found and with Uiso(H) values set at 1.5 Ueq(O).

Figures

Fig. 1.
A view of (I), showing the labeling of the non-H atoms and 45% probability ellipsoids.
Fig. 2.
A perspective view of a one-dimensional chain running parallel to [010], showing the packing mode and the O–H···N. hydrogen bonds as dashed lines. All H atoms not involved in the hydrogen-bond motifs have been omitted for ...

Crystal data

C10H10N4O4F(000) = 1040
Mr = 250.22Dx = 1.561 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 17425 reflections
a = 8.4327 (17) Åθ = 3.1–27.5°
b = 15.116 (3) ŵ = 0.12 mm1
c = 16.702 (3) ÅT = 295 K
V = 2129.0 (7) Å3Prism, colorless
Z = 80.51 × 0.27 × 0.2 mm

Data collection

Rigaku R-AXIS RAPID diffractometer2436 independent reflections
Radiation source: fine-focus sealed tube2159 reflections with I > 2σ(I)
graphiteRint = 0.026
Detector resolution: 0 pixels mm-1θmax = 27.5°, θmin = 3.0°
ω scansh = −10→10
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)k = −19→19
Tmin = 0.961, Tmax = 0.978l = −21→21
18907 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086H-atom parameters constrained
S = 1.05w = 1/[σ2(Fo2) + (0.0416P)2 + 1.0303P] where P = (Fo2 + 2Fc2)/3
2436 reflections(Δ/σ)max < 0.001
163 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = −0.21 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.09214 (10)0.31447 (5)0.31089 (5)0.01700 (19)
H10.14410.26740.29690.050*
O20.21420 (10)0.38341 (5)0.20945 (5)0.01586 (18)
O40.24120 (10)0.83984 (6)0.49664 (5)0.01865 (19)
N30.11682 (11)0.68000 (6)0.44503 (5)0.0121 (2)
O30.10682 (10)0.91340 (5)0.40169 (5)0.01702 (19)
H100.15960.95750.41890.050*
C50.12876 (13)0.38415 (7)0.26763 (6)0.0124 (2)
N10.11865 (11)0.54801 (6)0.26858 (5)0.0123 (2)
N20.23979 (12)0.67789 (6)0.26608 (5)0.0145 (2)
N40.23766 (12)0.55062 (6)0.44669 (6)0.0148 (2)
C60.18459 (13)0.61528 (7)0.40021 (6)0.0121 (2)
C80.12794 (14)0.65457 (7)0.52369 (6)0.0147 (2)
H70.09160.68570.56810.018*
C100.14467 (13)0.84266 (7)0.44296 (6)0.0127 (2)
C10.18552 (13)0.61380 (7)0.31285 (6)0.0120 (2)
C40.04544 (14)0.46687 (7)0.29809 (7)0.0146 (2)
H3−0.06470.46540.28140.017*
H20.04770.46700.35620.017*
C90.04736 (13)0.76275 (7)0.41703 (7)0.0137 (2)
H9−0.05940.76820.43810.016*
H80.04050.76170.35910.016*
C30.13028 (14)0.57281 (7)0.18970 (6)0.0148 (2)
H40.09410.54130.14550.018*
C70.20265 (14)0.57488 (8)0.52384 (7)0.0159 (2)
H60.22640.54190.56930.019*
C20.20507 (14)0.65256 (8)0.18896 (7)0.0154 (2)
H50.22910.68500.14320.019*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0212 (4)0.0099 (4)0.0199 (4)0.0007 (3)0.0056 (3)0.0007 (3)
O20.0179 (4)0.0146 (4)0.0151 (4)0.0005 (3)0.0031 (3)−0.0006 (3)
O40.0233 (4)0.0155 (4)0.0172 (4)−0.0035 (3)−0.0063 (3)0.0016 (3)
N30.0147 (4)0.0096 (4)0.0120 (4)0.0001 (4)−0.0002 (3)−0.0005 (3)
O30.0196 (4)0.0103 (4)0.0212 (4)−0.0015 (3)−0.0053 (3)0.0019 (3)
C50.0118 (5)0.0114 (5)0.0140 (5)−0.0021 (4)−0.0025 (4)−0.0014 (4)
N10.0143 (4)0.0092 (4)0.0134 (4)−0.0002 (4)0.0011 (3)−0.0010 (3)
N20.0187 (5)0.0116 (4)0.0131 (5)−0.0011 (4)0.0000 (4)0.0015 (3)
N40.0184 (5)0.0121 (4)0.0138 (4)0.0022 (4)0.0008 (4)0.0017 (3)
C60.0141 (5)0.0092 (5)0.0132 (5)−0.0008 (4)0.0002 (4)0.0000 (4)
C80.0178 (5)0.0154 (5)0.0108 (5)−0.0012 (4)0.0012 (4)0.0001 (4)
C100.0140 (5)0.0118 (5)0.0124 (5)0.0008 (4)0.0023 (4)−0.0009 (4)
C10.0137 (5)0.0087 (5)0.0135 (5)0.0009 (4)0.0001 (4)−0.0004 (4)
C40.0151 (5)0.0102 (5)0.0184 (5)−0.0023 (4)0.0034 (4)−0.0010 (4)
C90.0152 (5)0.0098 (5)0.0160 (5)0.0017 (4)−0.0016 (4)0.0000 (4)
C30.0168 (5)0.0154 (5)0.0122 (5)0.0020 (4)−0.0005 (4)−0.0020 (4)
C70.0198 (5)0.0162 (5)0.0118 (5)−0.0003 (4)0.0007 (4)0.0024 (4)
C20.0191 (5)0.0153 (5)0.0119 (5)0.0007 (4)0.0002 (4)0.0012 (4)

Geometric parameters (Å, °)

O1—C51.3140 (13)N4—C61.3260 (14)
O1—H10.8677N4—C71.3718 (14)
O2—C51.2098 (14)C6—C11.4592 (15)
O4—C101.2117 (14)C8—C71.3594 (17)
N3—C61.3579 (14)C8—H70.9300
N3—C81.3720 (14)C10—C91.5230 (15)
N3—C91.4583 (13)C4—H30.9700
O3—C101.3116 (13)C4—H20.9700
O3—H100.8513C9—H90.9700
C5—C41.5217 (15)C9—H80.9700
N1—C11.3614 (14)C3—C21.3605 (17)
N1—C31.3733 (14)C3—H40.9300
N1—C41.4589 (14)C7—H60.9300
N2—C11.3259 (14)C2—H50.9300
N2—C21.3752 (14)
C5—O1—H1113.0N2—C1—C6125.43 (10)
C6—N3—C8107.30 (9)N1—C1—C6123.50 (10)
C6—N3—C9127.61 (9)N1—C4—C5112.49 (9)
C8—N3—C9125.08 (9)N1—C4—H3109.1
C10—O3—H10109.5C5—C4—H3109.1
O2—C5—O1125.04 (10)N1—C4—H2109.1
O2—C5—C4123.44 (10)C5—C4—H2109.1
O1—C5—C4111.49 (9)H3—C4—H2107.8
C1—N1—C3106.98 (9)N3—C9—C10111.88 (9)
C1—N1—C4127.30 (9)N3—C9—H9109.2
C3—N1—C4125.72 (9)C10—C9—H9109.2
C1—N2—C2105.96 (9)N3—C9—H8109.2
C6—N4—C7106.27 (9)C10—C9—H8109.2
N4—C6—N3110.50 (10)H9—C9—H8107.9
N4—C6—C1124.91 (10)C2—C3—N1106.48 (9)
N3—C6—C1124.37 (10)C2—C3—H4126.8
C7—C8—N3106.36 (9)N1—C3—H4126.8
C7—C8—H7126.8C8—C7—N4109.57 (10)
N3—C8—H7126.8C8—C7—H6125.2
O4—C10—O3125.52 (10)N4—C7—H6125.2
O4—C10—C9122.99 (10)C3—C2—N2109.69 (10)
O3—C10—C9111.47 (9)C3—C2—H5125.2
N2—C1—N1110.89 (9)N2—C2—H5125.2

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1···N2i0.871.752.6137 (13)176
O3—H10···N4ii0.851.722.5666 (13)176
C4—H2···N40.972.543.2234 (17)127
C4—H3···O2iii0.972.243.0675 (16)142
C2—H5···O4iv0.932.483.2286 (16)138
C8—H7···O1v0.932.553.3610 (15)146
C9—H8···N20.972.623.2611 (16)124
C9—H9···O4vi0.972.593.3391 (15)135

Symmetry codes: (i) −x+1/2, y−1/2, z; (ii) −x+1/2, y+1/2, z; (iii) x−1/2, y, −z+1/2; (iv) x, −y+3/2, z−1/2; (v) −x, −y+1, −z+1; (vi) x−1/2, −y+3/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2599).

References

  • Barnett, W. M., Baughman, R. G., Secondo, P. M. & Hermansen, C. J. (2002). Acta Cryst. C58, o565–o567. [PubMed]
  • Barnett, W. M., Collier, H. L., Baughman, R. G. & Vizuete, W. G. (1999). J. Chem. Crystallogr.29, 765–768.
  • Barnett, W. M., Secondo, P. M. & Collier, H. L. (1996). J. Heterocycl. Chem.33, 1363–1365.
  • Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  • Ion, L., Morales, D., Nieto, S., Perez, J., Riera, L., Riera, V., Miguel, D., Kowenicki, R. A. & McPartlin, M. (2007). Inorg. Chem.46, 2846–2853. [PubMed]
  • Pereira, C. C. L., Costa, P. J., Calhorda, M. J., Freire, C., Rodrigues, S. S., Herdtweck, E. & Romao, C. C. (2006). Organometallics, 25, 5223–5234.
  • Rigaku (1998). RAPID-AUTO Rigaku Corporation, Tokyo, Japan.
  • Rigaku/MSC (2004). CrystalStructure Rigaku/MSC Inc., The Woodlands, Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Zhang, T. & Liang, H.-Z. (2009). Acta Cryst. E65, o213–o214. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography