PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 April 1; 65(Pt 4): o786.
Published online 2009 March 19. doi:  10.1107/S1600536809009040
PMCID: PMC2968828

N-(2-Pyridylmethyleneamino)dehydro­abietylamine

Abstract

The title compound {systematic name: 1-[(1R,4aS,10aR)-7-isopropyl-1,2,3,4,4a,9,10,10a-octa­hydro­phenanthren-1-yl]-N-[(E)-2-pyridylmethyleneamino]methanamine}, C26H33N2, has been synthesized from dehydro­abietylamine. The two cyclo­hexane rings form a trans ring junction with classic chair and half-chair conformations, respectively, whereas the benzene and pyridine rings are almost planar, and the dihedral angle between them is 80.4°. The two methyl groups directly attached to the tricyclic nucleus are on the same side of the tricyclic hydro­phenanthrene structure.

Related literature

For the biological activity of a related compound, , see: Cannon (1952 [triangle]); Heinrich (1981 [triangle]); Kalser & Scheer (1976 [triangle]); Rao, Song & He (2008 [triangle]); Rao, Song, He & Jia (2008 [triangle]); Wilkerson et al. (1991 [triangle], 1993 [triangle]). For the crystal structure of a related compound, see: Rao et al. (2006 [triangle], 2007 [triangle]); Rao, Song, Jia & Shang (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o786-scheme1.jpg

Experimental

Crystal data

  • C26H33N2
  • M r = 373.54
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o786-efi1.jpg
  • a = 11.294 (2) Å
  • b = 6.0870 (12) Å
  • c = 16.129 (3) Å
  • β = 98.71 (3)°
  • V = 1096.0 (4) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.07 mm−1
  • T = 293 K
  • 0.30 × 0.20 × 0.10 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: ψ scan (North et al., 1968 [triangle]) T min = 0.951, T max = 0.974
  • 2478 measured reflections
  • 2357 independent reflections
  • 1434 reflections with I > 2σ(I)
  • R int = 0.045
  • 3 standard reflections every 200 reflections intensity decay: none

Refinement

  • R[F 2 > 2σ(F 2)] = 0.064
  • wR(F 2) = 0.188
  • S = 1.00
  • 2357 reflections
  • 253 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.19 e Å−3
  • Δρmin = −0.20 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989 [triangle]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXL97; software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809009040/at2704sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809009040/at2704Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This research was supported by grants from the National Natural Science Foundation of China (grant No. 30771690) and the Forestry Commonwealth Industry Special Foundation of China (grant No. 200704008).

supplementary crystallographic information

Comment

Dehydroabietylamine is a highly interesting compound for its special structure and wide range of applications (Rao, Song, He & Jia, 2008). As an excellent chiral resolving agent, dehydroabietylamine is successful applied in the coalescent of Penicillin (Cannon,1952) and the synthesis of dihydroxyphenylalanine (Kalser et al., 1976). Dehydroabietylamine derivatives exhibited broad spectrum of biological properties including antibacterial, antifungal, and antipenetrant activities (Heinrich, 1981; Wilkerson et al., 1991; Wilkerson et al., 1993; Rao et al., 2007; Rao, Song, & He, 2008; Rao, Song, Jia & Shang, 2008)). Although much attention has been paid to dehydroabietylamine derivatives, the crystal structure of the title compound has not yet been reported. In this paper, we present the crystal structure of the title compound.

The title structure is compared with previously found structure 4-chloro-2-{(E)-[(1R,4aS,10aR)-7-isopropyl-1,4a-dimethyl-1,2, 3,4,4a,9,10,10a-octahydrophenanthren-1-yl] methyliminomethyl} phenol (Rao et al., 2006). They exhibited the same configurations with each other. As shown in Fig.1, the title compound contains four crystrallographically rings, the two cyclohexane rings (rings C and B) form a trans ring junction with classic chair and half-chair conformations, respectively. The benzene ring and the pyridine ring (rings A and D) are almost planar. The two methyl groups directly attached to the tricyclic nucleus are on the same side of the tricyclic hydrophenanthrene structure, and the two methyl groups are in the axis position of the cyclohexane ring, the bond lengths and bond angles in the molecule are in normal ranges.

Experimental

The title compound was prepared by the reaction of dehydroabietylamine (0.1 mol) and pyridylaldehyde (0.1 mol) in ethanol (100 ml) under 353.5 K for 4 h. Single crystals of the title compound were obtained by solvent evaporation [m.p. 372K].

Refinement

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.96Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms, and C—H = 0.97–0.98Å and Uiso(H) = 1.2Ueq(C) for all other H atoms. The high Flack value was resulted by the crystal quality.

Figures

Fig. 1.
The molecular structure of the title compound, with H atoms represented by small spheres of arbitrary radius and displacement ellipsoids at the 30% probability level.

Crystal data

C26H33N2F(000) = 406
Mr = 373.54Dx = 1.132 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 25 reflections
a = 11.294 (2) Åθ = 10–13°
b = 6.0870 (12) ŵ = 0.07 mm1
c = 16.129 (3) ÅT = 293 K
β = 98.71 (3)°Block, white
V = 1096.0 (4) Å30.30 × 0.20 × 0.10 mm
Z = 2

Data collection

Enraf–Nonius CAD-4 diffractometer1434 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.045
graphiteθmax = 26.0°, θmin = 1.3°
ω/2θ scansh = 0→13
Absorption correction: ψ scan (North et al., 1968)k = 0→7
Tmin = 0.951, Tmax = 0.974l = −19→19
2478 measured reflections3 standard reflections every 200 reflections
2357 independent reflections intensity decay: none

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.188H-atom parameters constrained
S = 1.00w = 1/[σ2(Fo2) + (0.1P)2] where P = (Fo2 + 2Fc2)/3
2357 reflections(Δ/σ)max < 0.001
253 parametersΔρmax = 0.19 e Å3
1 restraintΔρmin = −0.20 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N10.2116 (4)0.1781 (8)−0.1368 (2)0.0616 (12)
N20.0270 (5)0.4047 (9)−0.3125 (3)0.0814 (15)
C10.6341 (7)0.9761 (12)0.3876 (4)0.108 (3)
H1B0.56471.05190.35980.162*
H1C0.68610.94070.34770.162*
H1D0.67581.06840.43070.162*
C20.7016 (5)0.6441 (12)0.4723 (4)0.088 (2)
H2B0.67500.51390.49750.132*
H2C0.74360.73690.51510.132*
H2D0.75430.60410.43330.132*
C30.5953 (5)0.7653 (10)0.4268 (3)0.0653 (15)
H3A0.54690.80990.46950.078*
C40.5153 (5)0.6250 (9)0.3642 (3)0.0560 (14)
C50.3996 (4)0.5769 (10)0.3732 (3)0.0602 (15)
H5A0.36900.63030.41970.072*
C60.3280 (4)0.4524 (9)0.3157 (3)0.0541 (13)
H6A0.24950.42610.32390.065*
C70.3671 (4)0.3638 (8)0.2458 (3)0.0455 (11)
C80.4870 (4)0.4045 (9)0.2362 (3)0.0519 (12)
C90.5572 (4)0.5346 (10)0.2954 (3)0.0604 (14)
H9A0.63600.56230.28830.072*
C100.2857 (4)0.2215 (8)0.1825 (3)0.0444 (11)
C110.3278 (4)0.2466 (8)0.0964 (2)0.0433 (10)
H11A0.32900.40540.08650.052*
C120.4589 (4)0.1745 (10)0.1029 (3)0.0636 (15)
H12A0.46580.02180.12000.076*
H12B0.48400.18630.04820.076*
C130.5392 (5)0.3102 (14)0.1640 (3)0.092 (2)
H13A0.61850.33560.15760.110*
C140.1547 (4)0.2973 (9)0.1759 (3)0.0534 (13)
H14A0.12600.26720.22840.064*
H14B0.15070.45470.16660.064*
C150.0736 (4)0.1820 (11)0.1046 (3)0.0639 (15)
H15A0.07390.02510.11520.077*
H15B−0.00780.23490.10220.077*
C160.1160 (4)0.2251 (9)0.0222 (3)0.0538 (13)
H16A0.10990.38140.01060.065*
H16B0.06290.1501−0.02170.065*
C170.2442 (4)0.1517 (8)0.0188 (3)0.0482 (12)
C180.2950 (5)−0.0156 (9)0.2187 (3)0.0686 (16)
H18A0.2672−0.01710.27210.103*
H18B0.3769−0.06330.22560.103*
H18C0.2466−0.11280.18080.103*
C190.2519 (5)−0.1014 (9)0.0118 (3)0.0617 (15)
H19A0.2274−0.16780.06040.093*
H19B0.3329−0.14320.00820.093*
H19C0.2002−0.1500−0.03760.093*
C200.2829 (4)0.2563 (10)−0.0602 (3)0.0568 (13)
H20A0.27530.4147−0.05710.068*
H20B0.36650.2223−0.06150.068*
C210.1584 (5)0.3134 (10)−0.1878 (3)0.0612 (14)
H21A0.16540.4626−0.17560.073*
C220.0852 (4)0.2423 (10)−0.2665 (3)0.0559 (13)
C23−0.0394 (6)0.3452 (14)−0.3848 (4)0.094 (2)
H23A−0.08070.4544−0.41760.113*
C24−0.0503 (6)0.1341 (14)−0.4132 (4)0.085 (2)
H24A−0.09810.1010−0.46380.102*
C250.0104 (6)−0.0273 (12)−0.3659 (4)0.0780 (18)
H25A0.0054−0.1723−0.38430.094*
C260.0784 (5)0.0259 (11)−0.2916 (3)0.0672 (15)
H26A0.1196−0.0824−0.25820.081*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.074 (3)0.052 (3)0.055 (2)−0.001 (2)0.000 (2)−0.007 (2)
N20.091 (4)0.069 (4)0.079 (3)0.008 (3)−0.008 (3)0.003 (3)
C10.152 (7)0.067 (5)0.095 (5)−0.038 (5)−0.014 (4)−0.001 (4)
C20.084 (4)0.077 (5)0.092 (4)−0.001 (4)−0.027 (3)−0.013 (4)
C30.073 (4)0.058 (4)0.062 (3)−0.005 (3)0.003 (3)−0.007 (3)
C40.067 (3)0.047 (3)0.049 (3)0.006 (3)−0.006 (2)−0.003 (2)
C50.066 (3)0.063 (4)0.051 (3)0.004 (3)0.008 (3)−0.001 (3)
C60.056 (3)0.052 (3)0.054 (3)−0.001 (3)0.005 (2)0.007 (3)
C70.055 (3)0.037 (3)0.043 (2)0.002 (2)0.004 (2)0.009 (2)
C80.050 (3)0.053 (3)0.051 (3)−0.002 (3)0.001 (2)−0.005 (3)
C90.049 (3)0.066 (4)0.064 (3)−0.012 (3)0.002 (2)0.005 (3)
C100.044 (2)0.033 (3)0.054 (2)−0.001 (2)0.003 (2)0.009 (2)
C110.046 (2)0.033 (2)0.050 (2)−0.001 (2)0.0013 (19)0.001 (2)
C120.049 (3)0.075 (4)0.066 (3)−0.001 (3)0.006 (2)−0.016 (3)
C130.049 (3)0.146 (7)0.083 (4)−0.026 (4)0.020 (3)−0.055 (5)
C140.050 (3)0.052 (3)0.060 (3)0.000 (2)0.013 (2)0.004 (3)
C150.043 (2)0.078 (4)0.069 (3)−0.001 (3)0.000 (2)0.001 (3)
C160.049 (3)0.047 (3)0.061 (3)0.000 (3)−0.005 (2)0.005 (3)
C170.055 (3)0.030 (2)0.059 (3)−0.002 (2)0.005 (2)−0.001 (2)
C180.087 (4)0.046 (3)0.068 (3)−0.012 (3)−0.002 (3)0.019 (3)
C190.067 (3)0.041 (3)0.073 (3)−0.003 (3)−0.002 (3)−0.004 (3)
C200.067 (3)0.050 (3)0.053 (3)−0.008 (3)0.005 (2)−0.002 (3)
C210.068 (3)0.054 (3)0.061 (3)−0.001 (3)0.008 (3)−0.006 (3)
C220.061 (3)0.053 (3)0.053 (3)0.002 (3)0.007 (2)0.006 (3)
C230.089 (5)0.088 (6)0.094 (5)0.014 (4)−0.021 (4)0.016 (5)
C240.087 (4)0.098 (6)0.065 (4)−0.029 (4)−0.001 (3)0.001 (4)
C250.102 (5)0.063 (4)0.067 (4)−0.014 (4)0.008 (3)−0.005 (4)
C260.076 (4)0.060 (4)0.064 (3)−0.005 (3)0.007 (3)0.003 (3)

Geometric parameters (Å, °)

N1—C211.251 (6)C12—H12A0.9700
N1—C201.449 (6)C12—H12B0.9700
N2—C231.337 (8)C13—H13A0.9300
N2—C221.345 (7)C14—C151.528 (7)
C1—C31.523 (9)C14—H14A0.9700
C1—H1B0.9600C14—H14B0.9700
C1—H1C0.9600C15—C161.501 (6)
C1—H1D0.9600C15—H15A0.9700
C2—C31.502 (8)C15—H15B0.9700
C2—H2B0.9600C16—C171.524 (6)
C2—H2C0.9600C16—H16A0.9700
C2—H2D0.9600C16—H16B0.9700
C3—C41.513 (7)C17—C201.545 (7)
C3—H3A0.9800C17—C191.548 (7)
C4—C51.368 (7)C18—H18A0.9600
C4—C91.386 (7)C18—H18B0.9600
C5—C61.364 (7)C18—H18C0.9600
C5—H5A0.9300C19—H19A0.9600
C6—C71.381 (6)C19—H19B0.9600
C6—H6A0.9300C19—H19C0.9600
C7—C81.407 (6)C20—H20A0.9700
C7—C101.534 (6)C20—H20B0.9700
C8—C91.392 (7)C21—C221.473 (7)
C8—C131.498 (7)C21—H21A0.9300
C9—H9A0.9300C22—C261.376 (8)
C10—C141.537 (6)C23—C241.363 (10)
C10—C111.543 (6)C23—H23A0.9300
C10—C181.555 (7)C24—C251.363 (9)
C11—C121.532 (6)C24—H24A0.9300
C11—C171.560 (6)C25—C261.361 (8)
C11—H11A0.9800C25—H25A0.9300
C12—C131.485 (7)C26—H26A0.9300
C21—N1—C20119.6 (5)C15—C14—H14A109.2
C23—N2—C22116.4 (6)C10—C14—H14A109.2
C3—C1—H1B109.5C15—C14—H14B109.2
C3—C1—H1C109.5C10—C14—H14B109.2
H1B—C1—H1C109.5H14A—C14—H14B107.9
C3—C1—H1D109.5C16—C15—C14110.5 (4)
H1B—C1—H1D109.5C16—C15—H15A109.5
H1C—C1—H1D109.5C14—C15—H15A109.5
C3—C2—H2B109.5C16—C15—H15B109.5
C3—C2—H2C109.5C14—C15—H15B109.5
H2B—C2—H2C109.5H15A—C15—H15B108.1
C3—C2—H2D109.5C15—C16—C17114.4 (4)
H2B—C2—H2D109.5C15—C16—H16A108.7
H2C—C2—H2D109.5C17—C16—H16A108.7
C2—C3—C4113.7 (5)C15—C16—H16B108.7
C2—C3—C1110.9 (6)C17—C16—H16B108.7
C4—C3—C1112.2 (4)H16A—C16—H16B107.6
C2—C3—H3A106.5C16—C17—C20107.4 (4)
C4—C3—H3A106.5C16—C17—C19111.0 (4)
C1—C3—H3A106.5C20—C17—C19108.9 (4)
C5—C4—C9116.6 (5)C16—C17—C11108.9 (4)
C5—C4—C3122.3 (5)C20—C17—C11107.2 (4)
C9—C4—C3121.1 (5)C19—C17—C11113.1 (4)
C6—C5—C4121.6 (5)C10—C18—H18A109.5
C6—C5—H5A119.2C10—C18—H18B109.5
C4—C5—H5A119.2H18A—C18—H18B109.5
C5—C6—C7122.8 (5)C10—C18—H18C109.5
C5—C6—H6A118.6H18A—C18—H18C109.5
C7—C6—H6A118.6H18B—C18—H18C109.5
C6—C7—C8116.9 (4)C17—C19—H19A109.5
C6—C7—C10122.0 (4)C17—C19—H19B109.5
C8—C7—C10121.1 (4)H19A—C19—H19B109.5
C9—C8—C7118.9 (4)C17—C19—H19C109.5
C9—C8—C13120.0 (4)H19A—C19—H19C109.5
C7—C8—C13121.1 (4)H19B—C19—H19C109.5
C4—C9—C8123.2 (5)N1—C20—C17112.2 (4)
C4—C9—H9A118.4N1—C20—H20A109.2
C8—C9—H9A118.4C17—C20—H20A109.2
C7—C10—C14110.5 (4)N1—C20—H20B109.2
C7—C10—C11107.9 (3)C17—C20—H20B109.2
C14—C10—C11109.4 (3)H20A—C20—H20B107.9
C7—C10—C18105.9 (3)N1—C21—C22121.6 (5)
C14—C10—C18108.3 (4)N1—C21—H21A119.2
C11—C10—C18114.7 (4)C22—C21—H21A119.2
C12—C11—C10109.6 (4)N2—C22—C26122.7 (5)
C12—C11—C17114.2 (4)N2—C22—C21115.0 (5)
C10—C11—C17117.0 (4)C26—C22—C21122.2 (5)
C12—C11—H11A104.9N2—C23—C24123.9 (7)
C10—C11—H11A104.9N2—C23—H23A118.0
C17—C11—H11A104.9C24—C23—H23A118.0
C13—C12—C11111.9 (5)C25—C24—C23118.6 (6)
C13—C12—H12A109.2C25—C24—H24A120.7
C11—C12—H12A109.2C23—C24—H24A120.7
C13—C12—H12B109.2C26—C25—C24119.4 (7)
C11—C12—H12B109.2C26—C25—H25A120.3
H12A—C12—H12B107.9C24—C25—H25A120.3
C12—C13—C8117.2 (4)C25—C26—C22119.0 (6)
C12—C13—H13A121.4C25—C26—H26A120.5
C8—C13—H13A121.4C22—C26—H26A120.5
C15—C14—C10112.1 (4)
C2—C3—C4—C5115.6 (6)C9—C8—C13—C12−179.5 (6)
C1—C3—C4—C5−117.5 (6)C7—C8—C13—C120.5 (9)
C2—C3—C4—C9−63.0 (7)C7—C10—C14—C15171.7 (4)
C1—C3—C4—C963.9 (7)C11—C10—C14—C1553.0 (5)
C9—C4—C5—C6−2.2 (8)C18—C10—C14—C15−72.6 (5)
C3—C4—C5—C6179.2 (5)C10—C14—C15—C16−58.8 (6)
C4—C5—C6—C71.1 (8)C14—C15—C16—C1758.4 (6)
C5—C6—C7—C80.9 (7)C15—C16—C17—C20−166.7 (4)
C5—C6—C7—C10179.1 (5)C15—C16—C17—C1974.4 (6)
C6—C7—C8—C9−1.8 (7)C15—C16—C17—C11−50.8 (6)
C10—C7—C8—C9180.0 (5)C12—C11—C17—C16176.9 (4)
C6—C7—C8—C13178.2 (5)C10—C11—C17—C1646.9 (5)
C10—C7—C8—C130.0 (8)C12—C11—C17—C20−67.1 (5)
C5—C4—C9—C81.3 (8)C10—C11—C17—C20162.8 (4)
C3—C4—C9—C8179.9 (5)C12—C11—C17—C1952.9 (6)
C7—C8—C9—C40.7 (8)C10—C11—C17—C19−77.1 (5)
C13—C8—C9—C4−179.2 (6)C21—N1—C20—C17124.8 (5)
C6—C7—C10—C1432.6 (6)C16—C17—C20—N1−63.6 (5)
C8—C7—C10—C14−149.3 (4)C19—C17—C20—N156.7 (6)
C6—C7—C10—C11152.2 (4)C11—C17—C20—N1179.5 (4)
C8—C7—C10—C11−29.7 (6)C20—N1—C21—C22179.8 (4)
C6—C7—C10—C18−84.5 (5)C23—N2—C22—C260.3 (9)
C8—C7—C10—C1893.6 (5)C23—N2—C22—C21179.4 (5)
C7—C10—C11—C1258.8 (5)N1—C21—C22—N2175.8 (5)
C14—C10—C11—C12179.2 (4)N1—C21—C22—C26−5.1 (8)
C18—C10—C11—C12−59.0 (5)C22—N2—C23—C24−0.2 (11)
C7—C10—C11—C17−169.0 (4)N2—C23—C24—C25−0.4 (12)
C14—C10—C11—C17−48.7 (5)C23—C24—C25—C260.9 (10)
C18—C10—C11—C1773.2 (5)C24—C25—C26—C22−0.7 (9)
C10—C11—C12—C13−60.7 (6)N2—C22—C26—C250.1 (9)
C17—C11—C12—C13165.7 (5)C21—C22—C26—C25−178.9 (5)
C11—C12—C13—C829.8 (8)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2704).

References

  • Cannon, L. C. (1952). US Patent No. 2 585 436.
  • Enraf–Nonius (1989). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  • Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  • Heinrich, P. (1981). German Patent No. 300 768 224.
  • Kalser, A. & Scheer, M. (1976). US Patent No. 3 969 397.
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  • Rao, X. P., Song, Z. Q. & Gao, H. (2007). Chem. Ind. For. Prod.27, 97–99.
  • Rao, X.-P., Song, Z.-Q., Gong, Y., Yao, X.-J. & Shang, S.-B. (2006). Acta Cryst. E62, o3450–o3451.
  • Rao, X. P., Song, Z. Q. & He, L. (2008). Heteroat. Chem.19, 512–516.
  • Rao, X. P., Song, Z. Q., He, L. & Jia, W. H. (2008). Chem. Pharm. Bull.56, 1575–1578. [PubMed]
  • Rao, X. P., Song, Z. Q., Jia, W. H. & Shang, S. B. (2008). Chemistry, 71, 723–730.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wilkerson, W. W., Delucca, I. & Galbraith, W. (1991). Eur. J. Med. Chem.26, 667–676.
  • Wilkerson, W. W., Galbraith, W. & Delucca, I. (1993). Bioorg. Med. Chem. Lett.3, 2087–2092.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography