PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 April 1; 65(Pt 4): o691.
Published online 2009 March 6. doi:  10.1107/S1600536809007636
PMCID: PMC2968824

N′-Cyclo­hexyl­idene-2-hydroxy­benzo­hydrazide

Abstract

In the title mol­ecule, C13H16N2O2, the cyclo­hexyl­idene ring adopts a chair conformation. The intra­molecular N—H(...)O hydrogen bond influences the mol­ecular conformation: the benzene ring and the mean plane of the central C(O)NHN fragment form a dihedral angle of 4.9 (1) Å. In the crystal, inter­molecular O—H(...)O hydrogen bonds link the mol­ecules into chains propagated along [001].

Related literature

For properties of Shiff-base derivatives, see Sreeja et al. (2003 [triangle]). For a related structure, see Luo et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o691-scheme1.jpg

Experimental

Crystal data

  • C13H16N2O2
  • M r = 232.28
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o691-efi1.jpg
  • a = 18.376 (2) Å
  • b = 5.3386 (10) Å
  • c = 12.9435 (15) Å
  • β = 102.241 (2)°
  • V = 1240.9 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 293 K
  • 0.39 × 0.29 × 0.27 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.968, T max = 0.977
  • 2969 measured reflections
  • 1090 independent reflections
  • 898 reflections with I > 2σ(I)
  • R int = 0.024

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047
  • wR(F 2) = 0.138
  • S = 1.08
  • 1090 reflections
  • 154 parameters
  • 2 restraints
  • H-atom parameters constrained
  • Δρmax = 0.28 e Å−3
  • Δρmin = −0.15 e Å−3

Data collection: SMART (Siemens, 1996 [triangle]); cell refinement: SAINT (Siemens, 1996 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809007636/cv2521sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809007636/cv2521Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The author acknowledges the support of the National Natural Science Foundation of Liaocheng Vocational and Technical College (grant No. 081040).

supplementary crystallographic information

Comment

Chemistry of Schiff bases has been intensively investigated in recent years, owing to their coordination properties and diverse applications. Schiff base derivatives and their complexes have been studied for their antifungal and antibacterial activ- ity, and as antiviral drugs (Sreeja et al., 2003). In this paper, we present the crystal structure of the title compound, (I), which was synthesized by the reaction of cyclohexanone and salicyloyl hydrazide.

In (I) (Fig. 1), the bond lengths and angles are normal and comparable to those observed in the compound reported by Luo et al. (2007). The cyclohexylidene ring adopts a chair conformation. Intramolecular N—H···O hydrogen bond (Table 1) influences the molecular conformationthe - dihedral angle between the benzene ring and the plane C1/N1/N2 is 4.9 (1) Å. The plane C1/N1/N2 and ring C8-C13 form a dihedral angle of 37.7 (3) Å. Intermolecular O—H···O hydrogen bonds (Table 1) link the molecules into chains propagated in direction [001].

Experimental

Salicyloyl hydrazide (5 mmol) and cyclohexanone (5 mmol),20 ml e nthanol were mixed in 50 ml flash. After stirring 30 min at 353 K, the mixture then cooling slowly to room temperature and affording the title compound, then recrystallized from ethanol, affording the title compound as a red crystalline solid. Elemental analysis: calculated for C13H16N2O2: C 67.22, H 6.94, N 12.06%; found: C 67.29, H 6.85, N 12.24%.

Refinement

All H atoms were placed in geometrically idealized positions (N—H 0.86 Å, O—H 0.82 Å and C—H=0.93–0.97 Å) and treated as riding on their parent atoms, with Uiso(H) = 1.2-1.5Ueq of the parent atom. In the absence of any significant anomalous scatterers in the molecule, 330 Friedel pairs were merged before the final refinement.

Figures

Fig. 1.
The molecular structure of (I) with the atomic numbering scheme and 30% probability displacement ellipsoids.

Crystal data

C13H16N2O2F(000) = 496
Mr = 232.28Dx = 1.243 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
a = 18.376 (2) ÅCell parameters from 1322 reflections
b = 5.3386 (10) Åθ = 3.2–27.5°
c = 12.9435 (15) ŵ = 0.09 mm1
β = 102.241 (2)°T = 293 K
V = 1240.9 (3) Å3Block, red
Z = 40.39 × 0.29 × 0.27 mm

Data collection

Bruker SMART Apex CCD area-detector diffractometer1090 independent reflections
Radiation source: fine-focus sealed tube898 reflections with I > 2σ(I)
graphiteRint = 0.024
phi and ω scansθmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −21→11
Tmin = 0.968, Tmax = 0.977k = −6→6
2969 measured reflectionsl = −15→15

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.138H-atom parameters constrained
S = 1.08w = 1/[σ2(Fo2) + (0.0866P)2 + 0.3353P] where P = (Fo2 + 2Fc2)/3
1090 reflections(Δ/σ)max < 0.001
154 parametersΔρmax = 0.28 e Å3
2 restraintsΔρmin = −0.15 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N10.18964 (17)0.6052 (6)0.1521 (2)0.0432 (8)
H10.17760.61790.21260.052*
N20.15740 (18)0.7600 (7)0.0684 (2)0.0475 (8)
O10.2584 (2)0.4124 (5)0.0501 (2)0.0577 (8)
O20.20359 (16)0.4399 (5)0.3488 (2)0.0511 (8)
H20.19650.41520.40840.077*
C10.24015 (19)0.4354 (7)0.1362 (2)0.0371 (8)
C20.27283 (19)0.2675 (7)0.2264 (3)0.0369 (8)
C30.25343 (18)0.2669 (6)0.3267 (3)0.0370 (8)
C40.2836 (2)0.0878 (7)0.4024 (3)0.0465 (10)
H40.26990.08590.46750.056*
C50.3333 (2)−0.0845 (8)0.3810 (3)0.0524 (11)
H50.3533−0.20320.43170.063*
C60.3545 (2)−0.0838 (7)0.2838 (3)0.0505 (11)
H60.3890−0.19970.26990.061*
C70.3240 (2)0.0891 (7)0.2088 (3)0.0422 (9)
H70.33800.08710.14390.051*
C80.1097 (3)0.9202 (8)0.0854 (3)0.0531 (11)
C90.0802 (3)0.9560 (10)0.1848 (4)0.0681 (13)
H9A0.09930.82410.23480.082*
H9B0.09761.11510.21700.082*
C10−0.0029 (3)0.9511 (13)0.1616 (5)0.0863 (18)
H10A−0.02000.99410.22530.104*
H10B−0.01980.78240.14150.104*
C11−0.0380 (3)1.1323 (12)0.0730 (5)0.0874 (17)
H11A−0.09171.11230.05720.105*
H11B−0.02661.30340.09610.105*
C12−0.0081 (3)1.0816 (13)−0.0264 (5)0.0849 (17)
H12A−0.02530.9184−0.05430.102*
H12B−0.02801.2059−0.07950.102*
C130.0746 (3)1.0884 (9)−0.0060 (4)0.0690 (14)
H13A0.09141.25910.00960.083*
H13B0.09081.0354−0.06910.083*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0527 (19)0.059 (2)0.0189 (15)0.0072 (17)0.0087 (13)0.0043 (13)
N20.0493 (18)0.067 (2)0.0256 (16)0.0066 (17)0.0075 (13)0.0104 (14)
O10.082 (2)0.0684 (18)0.0267 (14)0.0165 (16)0.0210 (13)0.0059 (12)
O20.0656 (18)0.0681 (18)0.0219 (13)0.0188 (15)0.0142 (12)0.0037 (12)
C10.044 (2)0.046 (2)0.0212 (19)−0.0032 (16)0.0065 (15)−0.0014 (14)
C20.0394 (19)0.046 (2)0.0239 (18)−0.0062 (16)0.0031 (14)−0.0038 (14)
C30.0407 (19)0.0477 (19)0.0219 (17)−0.0004 (18)0.0048 (14)−0.0020 (15)
C40.052 (2)0.059 (2)0.029 (2)0.004 (2)0.0115 (17)0.0057 (17)
C50.056 (3)0.056 (2)0.043 (3)0.008 (2)0.0052 (19)0.0111 (18)
C60.052 (2)0.055 (2)0.045 (3)0.0075 (19)0.014 (2)−0.0001 (18)
C70.048 (2)0.051 (2)0.0291 (19)0.0004 (18)0.0118 (16)−0.0045 (16)
C80.053 (2)0.073 (3)0.033 (2)0.002 (2)0.0079 (18)0.0075 (19)
C90.075 (3)0.086 (3)0.043 (3)0.027 (3)0.012 (2)0.005 (2)
C100.082 (4)0.110 (5)0.076 (4)0.015 (3)0.037 (3)−0.001 (3)
C110.072 (3)0.116 (4)0.072 (4)0.034 (3)0.008 (3)−0.001 (3)
C120.075 (4)0.115 (5)0.057 (3)0.023 (3)−0.002 (3)0.003 (3)
C130.075 (3)0.076 (3)0.053 (3)0.007 (3)0.007 (2)0.016 (2)

Geometric parameters (Å, °)

N1—C11.344 (5)C7—H70.9300
N1—N21.391 (4)C8—C91.510 (6)
N1—H10.8600C8—C131.516 (6)
N2—C81.277 (5)C9—C101.493 (8)
O1—C11.236 (5)C9—H9A0.9700
O2—C31.373 (4)C9—H9B0.9700
O2—H20.8200C10—C111.534 (9)
C1—C21.493 (5)C10—H10A0.9700
C2—C71.391 (5)C10—H10B0.9700
C2—C31.417 (4)C11—C121.526 (9)
C3—C41.398 (5)C11—H11A0.9700
C4—C51.365 (6)C11—H11B0.9700
C4—H40.9300C12—C131.486 (8)
C5—C61.394 (6)C12—H12A0.9700
C5—H50.9300C12—H12B0.9700
C6—C71.370 (6)C13—H13A0.9700
C6—H60.9300C13—H13B0.9700
C1—N1—N2118.4 (3)C10—C9—H9A109.4
C1—N1—H1120.8C8—C9—H9A109.4
N2—N1—H1120.8C10—C9—H9B109.4
C8—N2—N1117.3 (3)C8—C9—H9B109.4
C3—O2—H2109.5H9A—C9—H9B108.0
O1—C1—N1122.2 (3)C9—C10—C11112.9 (5)
O1—C1—C2120.3 (3)C9—C10—H10A109.0
N1—C1—C2117.5 (3)C11—C10—H10A109.0
C7—C2—C3117.3 (3)C9—C10—H10B109.0
C7—C2—C1117.2 (3)C11—C10—H10B109.0
C3—C2—C1125.4 (3)H10A—C10—H10B107.8
O2—C3—C4119.8 (3)C12—C11—C10110.4 (5)
O2—C3—C2119.9 (3)C12—C11—H11A109.6
C4—C3—C2120.3 (3)C10—C11—H11A109.6
C5—C4—C3120.1 (4)C12—C11—H11B109.6
C5—C4—H4119.9C10—C11—H11B109.6
C3—C4—H4119.9H11A—C11—H11B108.1
C4—C5—C6120.5 (4)C13—C12—C11112.5 (5)
C4—C5—H5119.7C13—C12—H12A109.1
C6—C5—H5119.7C11—C12—H12A109.1
C7—C6—C5119.4 (4)C13—C12—H12B109.1
C7—C6—H6120.3C11—C12—H12B109.1
C5—C6—H6120.3H12A—C12—H12B107.8
C6—C7—C2122.3 (4)C12—C13—C8112.0 (5)
C6—C7—H7118.8C12—C13—H13A109.2
C2—C7—H7118.8C8—C13—H13A109.2
N2—C8—C9128.0 (4)C12—C13—H13B109.2
N2—C8—C13117.1 (4)C8—C13—H13B109.2
C9—C8—C13114.8 (4)H13A—C13—H13B107.9
C10—C9—C8111.3 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···O20.861.972.655 (4)136
O2—H2···O1i0.822.152.704 (4)125

Symmetry codes: (i) x, −y+1, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2521).

References

  • Luo, Z.-G. (2007). Acta Cryst. E63, o3672.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siemens (1996). SMART and SAINT Siemens Analytical X-ray Systems Inc., Madison, Wisconsin, USA.
  • Sreeja, P. B., Sreekanth, A., Nayar, C. R., Prathapachandra Kurup, M. R., Usman, A., Razak, I. A., Chantrapromma, S. & Fun, H. K. (2003). J. Mol. Struct.645, 221–226.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography