PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 April 1; 65(Pt 4): o724.
Published online 2009 March 11. doi:  10.1107/S1600536809008125
PMCID: PMC2968814

2-p-Tolyl-4,5-dihydro-1H-imidazole

Abstract

In the mol­ecule of the title compound, C10H12N2, the six- and five-membered rings are almost co-planar, forming a dihedral angle of 3.56 (8)°. In the crystal structure, neighbouring mol­ecules are linked together by inter­molecular N—H(...)N hydrogen bonds into one-dimensional infinite chains along the c axis. The crystal structure, is further stabilized by weak inter­molecular C—H(...)π and π–π stacking [centroid–centroid distance = 3.8892 (9) Å] inter­actions.

Related literature

For bond-length data, see: Allen et al. (1987 [triangle]). For hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]). For related structures and syntheses, see, Stibrany et al. (2004 [triangle]); Kia et al., 2008 [triangle], 2009 [triangle]). For applications of imidazoline derivatives, see, for example: Blancafort (1978 [triangle]); Chan (1993 [triangle]); Vizi (1986 [triangle]); Li et al. (1996 [triangle]); Ueno et al., (1995 [triangle]); Corey & Grogan (1999 [triangle]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o724-scheme1.jpg

Experimental

Crystal data

  • C10H12N2
  • M r = 160.22
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o724-efi1.jpg
  • a = 5.1134 (1) Å
  • b = 16.4020 (4) Å
  • c = 10.1712 (2) Å
  • β = 94.293 (1)°
  • V = 850.66 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 100 K
  • 0.47 × 0.12 × 0.09 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.883, T max = 0.993
  • 8503 measured reflections
  • 1423 independent reflections
  • 1338 reflections with I > 2˘I)
  • R int = 0.031

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037
  • wR(F 2) = 0.102
  • S = 1.08
  • 1423 reflections
  • 114 parameters
  • 2 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.33 e Å−3
  • Δρmin = −0.21 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT (Bruker, 2005 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809008125/at2738sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809008125/at2738Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

HKF and RK thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. RK thanks Universiti Sains Malaysia for a post-doctoral research fellowship. HK thanks PNU for financial support. HKF also thanks Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

supplementary crystallographic information

Comment

Imidazoline derivatives are of great importance because they exhibit significant biological and pharmacological activities such as antihypertensive (Blancafort 1978), antihyperglycemic (Chan 1993), antidepressive (Vizi 1986), antihypercholesterolemic (Li et al., 1996) and antiinflammatory (Ueno et al., 1995). These compounds are also used as catalysts and synthetic intermediates in some organic reactions (Corey & Grogan 1999). With regards to the important applications of imidazolines, herein we report the crystal structure of the title compound, (I).

In the title compound (I, Fig. 1), bond lengths (Allen et al. 1987) and angles are within the normal ranges and are comparable with the related structures (Stibrany et al. 2004; Kia et al., 2008, 2009). The molecule is almost planar with a maximum deviation from the mean plane of the molecule for C2 atom being -0.176 (19) Å. The six- and five-membered rings are twisted from each other, forming the dihedral angle of 3.56 (8)°. The interesting feature of the crystal structure is the short C2···C10i contact [3.368 (2) Å; (i) 1 + x, y, z], which is shorter than the sum of the van der Waals radius of carbon atom. In the crystal structure, neighbouring molecules are linked together by intermolecular N—H···N hydrogen bonds into 1-D infinite chains along the c axis (Table 1, Fig. 2). The crystal structure is further stabilized by weak intermolecular π-π stacking [Cg1···Cg2iii = 3.8892 Å; (iii) -1 + x, y, z] and C—H···π interactions (Cg1 and Cg2 are the centroids of the N1/C2/C1/N2/C3-imidazoline and the benzene rings, respectiverly).

Experimental

The synthetic method was based on the previous work (Stibrany et al. 2004), except that 10 mmol of 4-methyl cyanobenzene and 40 mmol of ethylenediamine was used. Single crystals suitable for X-ray diffraction were obtained by evaporation of an methanol solution at room temperature.

Refinement

The N-bound hydrogen was located from the difference Fourier map are refined freely (see Table. 1). The rest of the hydrogen atoms were positioned geometrically with a riding approximation model with C—H = 0.93–0.97 Å and Uiso(H) = 1.2 & 1.5 Ueq(C). A rotating group model was applied for the methyl group. The 1120 Friedel pairs were merged before final refinement as there is not sufficient anomalous dispersion to determine the absolute structure.

Figures

Fig. 1.
The molecular structure of (I) with atom labels and 50% probability ellipsoids for non-H atoms.
Fig. 2.
The crystal packing of (I), viewed down the b-axis showing a 1-D infinite chain along the c-axis by intermolecular N—H···N interactions. The intermolecular interactions are shown as dashed lines.

Crystal data

C10H12N2F(000) = 344
Mr = 160.22Dx = 1.251 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 3821 reflections
a = 5.1134 (1) Åθ = 2.5–31.5°
b = 16.4020 (4) ŵ = 0.08 mm1
c = 10.1712 (2) ÅT = 100 K
β = 94.293 (1)°Needle, colourless
V = 850.66 (3) Å30.47 × 0.12 × 0.09 mm
Z = 4

Data collection

Bruker SMART APEXII CCD area-detector diffractometer1423 independent reflections
Radiation source: fine-focus sealed tube1338 reflections with I > 2˘I)
graphiteRint = 0.031
[var phi] and ω scansθmax = 31.5°, θmin = 2.5°
Absorption correction: multi-scan (SADABS; Bruker, 2005)h = −7→7
Tmin = 0.883, Tmax = 0.993k = −24→24
8503 measured reflectionsl = −14→14

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H atoms treated by a mixture of independent and constrained refinement
S = 1.08w = 1/[σ2(Fo2) + (0.0699P)2 + 0.0868P] where P = (Fo2 + 2Fc2)/3
1423 reflections(Δ/σ)max < 0.001
114 parametersΔρmax = 0.33 e Å3
2 restraintsΔρmin = −0.21 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N2−0.2547 (3)−0.01211 (8)1.08200 (13)0.0175 (3)
N1−0.2444 (3)−0.02899 (8)0.86191 (12)0.0189 (3)
C1−0.4382 (3)−0.07930 (9)1.04580 (15)0.0190 (3)
H1A−0.6091−0.06841.07740.023*
H1B−0.3728−0.13031.08370.023*
C2−0.4570 (3)−0.08371 (9)0.89368 (15)0.0181 (3)
H2A−0.4279−0.13880.86310.022*
H2B−0.6256−0.06440.85610.022*
C3−0.1632 (3)0.01280 (8)0.97337 (13)0.0142 (3)
C40.0262 (3)0.08065 (8)0.96924 (15)0.0141 (2)
C50.1072 (3)0.12199 (9)1.08498 (14)0.0189 (3)
H5A0.04040.10691.16400.023*
C60.2870 (3)0.18556 (9)1.08343 (15)0.0201 (3)
H6A0.33930.21251.16150.024*
C70.3900 (3)0.20952 (8)0.96598 (14)0.0171 (3)
C80.3049 (3)0.16917 (9)0.85050 (15)0.0216 (3)
H8A0.36900.18510.77120.026*
C90.1253 (3)0.10529 (9)0.85124 (15)0.0202 (3)
H9A0.07120.07900.77290.024*
C100.5915 (3)0.27668 (9)0.96448 (17)0.0229 (3)
H10A0.54670.31270.89180.034*
H10B0.76130.25340.95500.034*
H10C0.59460.30671.04560.034*
H1N1−0.233 (5)−0.0121 (14)0.781 (3)0.031 (6)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N20.0216 (6)0.0188 (5)0.0123 (5)−0.0046 (5)0.0029 (5)0.0002 (4)
N10.0257 (7)0.0208 (6)0.0103 (5)−0.0085 (5)0.0011 (5)−0.0010 (4)
C10.0227 (7)0.0211 (6)0.0134 (6)−0.0059 (5)0.0035 (5)0.0005 (5)
C20.0201 (7)0.0197 (6)0.0145 (6)−0.0052 (5)0.0007 (5)−0.0002 (5)
C30.0157 (6)0.0148 (6)0.0123 (6)0.0002 (5)0.0014 (5)−0.0002 (4)
C40.0156 (6)0.0147 (5)0.0118 (5)−0.0008 (4)0.0004 (4)0.0003 (4)
C50.0251 (8)0.0204 (6)0.0111 (6)−0.0053 (6)0.0009 (5)0.0015 (5)
C60.0252 (8)0.0224 (6)0.0122 (6)−0.0067 (6)−0.0025 (6)−0.0001 (5)
C70.0169 (7)0.0173 (6)0.0171 (6)−0.0031 (5)0.0011 (5)0.0012 (5)
C80.0260 (8)0.0233 (7)0.0164 (6)−0.0081 (6)0.0076 (6)−0.0009 (5)
C90.0257 (8)0.0219 (6)0.0134 (6)−0.0074 (6)0.0048 (5)−0.0024 (5)
C100.0211 (8)0.0226 (6)0.0249 (7)−0.0078 (6)0.0008 (6)0.0013 (6)

Geometric parameters (Å, °)

N2—C31.2976 (17)C5—C61.391 (2)
N2—C11.4763 (19)C5—H5A0.9300
N1—C31.3627 (17)C6—C71.3975 (19)
N1—C21.4641 (19)C6—H6A0.9300
N1—H1N10.87 (3)C7—C81.389 (2)
C1—C21.5447 (19)C7—C101.5092 (19)
C1—H1A0.9700C8—C91.394 (2)
C1—H1B0.9700C8—H8A0.9300
C2—H2A0.9700C9—H9A0.9300
C2—H2B0.9700C10—H10A0.9600
C3—C41.4779 (18)C10—H10B0.9600
C4—C51.394 (2)C10—H10C0.9600
C4—C91.397 (2)
C3—N2—C1106.60 (12)C6—C5—C4120.66 (13)
C3—N1—C2108.04 (12)C6—C5—H5A119.7
C3—N1—H1N1125.8 (17)C4—C5—H5A119.7
C2—N1—H1N1120.4 (18)C5—C6—C7120.80 (13)
N2—C1—C2105.98 (12)C5—C6—H6A119.6
N2—C1—H1A110.5C7—C6—H6A119.6
C2—C1—H1A110.5C8—C7—C6118.33 (13)
N2—C1—H1B110.5C8—C7—C10120.66 (13)
C2—C1—H1B110.5C6—C7—C10121.01 (13)
H1A—C1—H1B108.7C7—C8—C9121.21 (13)
N1—C2—C1101.59 (11)C7—C8—H8A119.4
N1—C2—H2A111.5C9—C8—H8A119.4
C1—C2—H2A111.5C8—C9—C4120.25 (14)
N1—C2—H2B111.5C8—C9—H9A119.9
C1—C2—H2B111.5C4—C9—H9A119.9
H2A—C2—H2B109.3C7—C10—H10A109.5
N2—C3—N1116.31 (12)C7—C10—H10B109.5
N2—C3—C4122.68 (12)H10A—C10—H10B109.5
N1—C3—C4120.98 (12)C7—C10—H10C109.5
C5—C4—C9118.72 (12)H10A—C10—H10C109.5
C5—C4—C3119.75 (13)H10B—C10—H10C109.5
C9—C4—C3121.53 (13)
C3—N2—C1—C2−5.19 (16)C9—C4—C5—C6−1.2 (2)
C3—N1—C2—C1−11.95 (15)C3—C4—C5—C6179.46 (14)
N2—C1—C2—N110.31 (15)C4—C5—C6—C70.1 (2)
C1—N2—C3—N1−2.84 (18)C5—C6—C7—C81.1 (2)
C1—N2—C3—C4179.35 (13)C5—C6—C7—C10−178.05 (14)
C2—N1—C3—N210.16 (18)C6—C7—C8—C9−1.2 (2)
C2—N1—C3—C4−171.99 (13)C10—C7—C8—C9177.91 (14)
N2—C3—C4—C5−1.8 (2)C7—C8—C9—C40.2 (2)
N1—C3—C4—C5−179.56 (14)C5—C4—C9—C81.0 (2)
N2—C3—C4—C9178.80 (15)C3—C4—C9—C8−179.62 (14)
N1—C3—C4—C91.1 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1N1···N2i0.87 (3)2.06 (3)2.9224 (18)170 (2)
C10—H10B···Cg1ii0.962.883.8110 (16)163

Symmetry codes: (i) x, −y, z−1/2; (ii) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2738).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  • Blancafort, P. (1978). Drugs Future, 3, 592–592.
  • Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chan, S. (1993). Clin. Sci.85, 671–677. [PubMed]
  • Corey, E. J. & Grogan, M. J. (1999). Org. Lett.1, 157–160. [PubMed]
  • Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  • Kia, R., Fun, H.-K. & Kargar, H. (2008). Acta Cryst. E64, o2406. [PMC free article] [PubMed]
  • Kia, R., Fun, H.-K. & Kargar, H. (2009). Acta Cryst. E65, o338–o339. [PMC free article] [PubMed]
  • Li, H. Y., Drummond, S., De Lucca, I. & Boswell, G. A. (1996). Tetrahedron, 52, 11153–11162.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Stibrany, R. T., Schugar, H. J. & Potenza, J. A. (2004). Acta Cryst. E60, o527–o529.
  • Ueno, M., Imaizumi, K., Sugita, T., Takata, I. & Takeshita, M. (1995). Int. J. Immunopharmacol.17, 597–603. [PubMed]
  • Vizi, E. S. (1986). Med. Res. Rev.6, 431–449. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography