PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 April 1; 65(Pt 4): o852.
Published online 2009 March 25. doi:  10.1107/S1600536809010186
PMCID: PMC2968811

4-Chloro-N′-(2-methoxy­benzyl­idene)benzohydrazide

Abstract

The title compound, C15H13ClN2O2, was prepared by the reaction of 3-methoxy­benzaldehyde and 4-chloro­benzo­hydrazide in methanol. The asymmetric unit consists of two unique molecules, which are linked together in the form of a cross by N—H(...)O and N—H(...)N hydrogen bonds. The dihedral angles between the two benzene rings in the mol­ecules are 77.3 (1) and 44.1 (1)°. In the crystal structure, mol­ecules are linked through inter­molecular N—H(...)O hydrogen bonds, forming chains along the a axis.

Related literature

For the crystal structures of hydrazone derivatives, see: Singh et al. (2007 [triangle]); Fun et al. (2008 [triangle]); Khaledi et al. (2008 [triangle]); Alhadi et al. (2008 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o852-scheme1.jpg

Experimental

Crystal data

  • C15H13ClN2O2
  • M r = 288.72
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o852-efi1.jpg
  • a = 7.802 (2) Å
  • b = 13.395 (3) Å
  • c = 14.599 (2) Å
  • α = 93.298 (2)°
  • β = 100.945 (3)°
  • γ = 106.055 (2)°
  • V = 1429.7 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.27 mm−1
  • T = 298 K
  • 0.13 × 0.13 × 0.12 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004 [triangle]) T min = 0.963, T max = 0.967
  • 8597 measured reflections
  • 6134 independent reflections
  • 3465 reflections with I > 2σ(I)
  • R int = 0.018

Refinement

  • R[F 2 > 2σ(F 2)] = 0.054
  • wR(F 2) = 0.153
  • S = 1.03
  • 6134 reflections
  • 363 parameters
  • H-atom parameters constrained
  • Δρmax = 0.27 e Å−3
  • Δρmin = −0.37 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996 [triangle]), ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809010186/dn2433sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809010186/dn2433Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

Financial support from Qiqihar University is gratefully acknowledged.

supplementary crystallographic information

Comment

Recently, the crystal structures of hydrazone derivatives have been widely reported (Singh et al., 2007; Fun et al., 2008; Khaledi et al., 2008; Alhadi et al., 2008). As an ongoing study of such compounds, the title new compound was reported here.

The asymmetric unit of the title compound consists of two crossed molecules, which are linked together by intramolecular N–H···O and N–H···N hydrogen bonds (Fig. 1 and Table 1). The dihedral angles between the two benzene rings in the molecules are 77.3 (1) and 44.1 (1)°, respectively. All the bond lengths are within normal ranges (Allen et al., 1987).

In the crystal structure, molecules are linked through intermolecular N–H···O hydrogen bonds (Table 1), forming chains along the a axis (Fig. 2).

Experimental

2-Methoxybenzaldehyde (1.0 mmol) and 4-chlorobenzohydrazide (1.0 mmol) were dissolved in a methanol solution. The mixture was stirred at room temperature for 10 min to give a clear colorless solution. The solution was left to slow evaporate for a few days, yielding colorless needle-shaped crystals.

Refinement

All H atoms attached to C atoms and N atom were fixed geometrically and treated as riding with C—H = 0.96 Å (methyl) or 0.93 Å (aromatic) and N—H = 0.86 Å with Uĩso(H) = xUeq(C or N) with x=1.2 or 1.5 for methyl group.

Figures

Fig. 1.
Molecular structure of the title compound with the atom-labeling scheme. Ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii. H bonds are shown as dashed lines.
Fig. 2.
Partial packing view showing the chain formed by N-H···O hydrogen bonds shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity. [Symmetry code: (i) x-1, y, z]

Crystal data

C15H13ClN2O2Z = 4
Mr = 288.72F(000) = 600
Triclinic, P1Dx = 1.341 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.802 (2) ÅCell parameters from 1723 reflections
b = 13.395 (3) Åθ = 2.5–24.5°
c = 14.599 (2) ŵ = 0.27 mm1
α = 93.298 (2)°T = 298 K
β = 100.945 (3)°Cut from needle, colorless
γ = 106.055 (2)°0.13 × 0.13 × 0.12 mm
V = 1429.7 (5) Å3

Data collection

Bruker APEXII CCD area-detector diffractometer6134 independent reflections
Radiation source: fine-focus sealed tube3465 reflections with I > 2σ(I)
graphiteRint = 0.018
ω scansθmax = 27.0°, θmin = 1.4°
Absorption correction: multi-scan (SADABS; Sheldrick, 2004)h = −9→9
Tmin = 0.963, Tmax = 0.967k = −16→17
8597 measured reflectionsl = −18→14

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.153H-atom parameters constrained
S = 1.03w = 1/[σ2(Fo2) + (0.0595P)2 + 0.2838P] where P = (Fo2 + 2Fc2)/3
6134 reflections(Δ/σ)max = 0.001
363 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = −0.37 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl1−0.36428 (18)0.35966 (9)0.40462 (10)0.1543 (6)
Cl20.01821 (14)0.31778 (8)0.07426 (8)0.1277 (4)
N10.1823 (3)0.75724 (14)0.25213 (13)0.0483 (5)
H10.06810.74460.22740.058*
N20.3077 (3)0.84442 (15)0.23333 (14)0.0507 (5)
N30.6661 (2)0.76354 (14)0.22293 (14)0.0500 (5)
H30.56450.75710.24020.060*
N40.8123 (2)0.85210 (14)0.25581 (13)0.0475 (5)
O10.3995 (2)0.69948 (13)0.33805 (12)0.0609 (5)
O20.1670 (4)0.9429 (2)−0.00901 (17)0.0918 (7)
O30.8240 (2)0.69020 (14)0.13798 (12)0.0633 (5)
O40.7265 (3)1.05068 (14)0.44551 (13)0.0713 (5)
C1−0.1898 (5)0.4568 (3)0.3777 (2)0.0879 (10)
C2−0.0336 (6)0.4345 (2)0.3656 (3)0.0975 (11)
H2−0.02260.36780.37190.117*
C30.1072 (4)0.5114 (2)0.3440 (2)0.0776 (8)
H3A0.21440.49710.33720.093*
C40.0877 (3)0.60967 (18)0.33272 (17)0.0528 (6)
C5−0.0703 (3)0.6296 (2)0.34588 (17)0.0581 (6)
H5−0.08350.69580.33890.070*
C6−0.2094 (4)0.5536 (2)0.3691 (2)0.0732 (8)
H6−0.31470.56830.37870.088*
C70.2386 (3)0.69232 (18)0.30901 (17)0.0493 (6)
C80.2455 (3)0.88706 (18)0.16387 (18)0.0525 (6)
H80.12960.85450.12730.063*
C90.3533 (4)0.9858 (2)0.1410 (2)0.0621 (7)
C100.3066 (5)1.0144 (3)0.0507 (3)0.0809 (10)
C110.4045 (7)1.1090 (3)0.0286 (4)0.1179 (17)
H110.37491.1280−0.03130.141*
C120.5443 (7)1.1749 (3)0.0941 (5)0.136 (2)
H120.60911.23850.07830.164*
C130.5913 (5)1.1490 (3)0.1832 (4)0.1147 (16)
H130.68731.19450.22720.138*
C140.4943 (4)1.0544 (2)0.2068 (3)0.0788 (9)
H140.52401.03680.26730.095*
C150.1087 (6)0.9678 (4)−0.1012 (3)0.1261 (17)
H15A0.08331.0339−0.09710.189*
H15B0.00020.9144−0.13300.189*
H15C0.20330.9720−0.13560.189*
C160.2096 (4)0.4261 (2)0.0957 (2)0.0792 (9)
C170.1896 (4)0.5239 (2)0.0987 (2)0.0723 (8)
H170.07370.53280.08750.087*
C180.3427 (3)0.6096 (2)0.11840 (17)0.0590 (7)
H180.32940.67650.12030.071*
C190.5153 (3)0.59732 (19)0.13536 (17)0.0528 (6)
C200.5314 (4)0.4971 (2)0.1296 (2)0.0737 (8)
H200.64660.48720.13910.088*
C210.3781 (5)0.4117 (2)0.1100 (2)0.0872 (10)
H210.38980.34440.10660.105*
C220.6829 (3)0.68759 (19)0.16411 (17)0.0507 (6)
C230.7862 (3)0.91383 (17)0.31774 (16)0.0469 (5)
H230.67640.89630.33780.056*
C240.9252 (3)1.01116 (17)0.35755 (16)0.0459 (5)
C250.8937 (3)1.08002 (18)0.42280 (17)0.0522 (6)
C261.0264 (4)1.1724 (2)0.4600 (2)0.0720 (8)
H261.00431.21820.50360.086*
C271.1899 (4)1.1971 (2)0.4332 (2)0.0871 (10)
H271.27911.25930.45920.105*
C281.2236 (4)1.1312 (2)0.3686 (2)0.0836 (9)
H281.33481.14850.35010.100*
C291.0921 (3)1.0396 (2)0.33148 (19)0.0620 (7)
H291.11540.99510.28730.074*
C300.6940 (5)1.1163 (2)0.5169 (2)0.0871 (10)
H30A0.77921.11970.57470.131*
H30B0.57171.08800.52560.131*
H30C0.70931.18530.49830.131*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.1353 (10)0.1066 (8)0.1913 (13)−0.0377 (7)0.0607 (9)0.0557 (8)
Cl20.0964 (7)0.0919 (7)0.1465 (9)−0.0403 (5)0.0170 (7)−0.0068 (6)
N10.0392 (10)0.0469 (11)0.0584 (12)0.0070 (8)0.0157 (9)0.0148 (9)
N20.0449 (11)0.0445 (11)0.0650 (13)0.0100 (9)0.0201 (10)0.0137 (10)
N30.0369 (10)0.0447 (11)0.0629 (12)0.0044 (8)0.0123 (9)−0.0067 (9)
N40.0416 (10)0.0417 (10)0.0531 (12)0.0038 (8)0.0099 (9)−0.0017 (9)
O10.0496 (11)0.0653 (11)0.0683 (11)0.0146 (9)0.0135 (9)0.0200 (9)
O20.1113 (19)0.1159 (19)0.0810 (15)0.0610 (17)0.0465 (14)0.0513 (14)
O30.0462 (10)0.0679 (11)0.0683 (11)0.0056 (8)0.0174 (9)−0.0139 (9)
O40.0701 (12)0.0601 (11)0.0799 (13)0.0030 (9)0.0377 (10)−0.0136 (9)
C10.084 (2)0.069 (2)0.089 (2)−0.0181 (17)0.0222 (19)0.0211 (17)
C20.120 (3)0.0505 (18)0.116 (3)0.0063 (19)0.031 (2)0.0317 (18)
C30.085 (2)0.0574 (18)0.093 (2)0.0173 (16)0.0265 (18)0.0241 (16)
C40.0568 (15)0.0484 (14)0.0494 (14)0.0067 (11)0.0136 (12)0.0114 (11)
C50.0577 (16)0.0557 (15)0.0558 (15)0.0034 (12)0.0184 (13)0.0099 (12)
C60.0646 (18)0.074 (2)0.0690 (18)−0.0059 (15)0.0227 (15)0.0112 (15)
C70.0482 (14)0.0482 (14)0.0504 (14)0.0092 (11)0.0149 (11)0.0060 (11)
C80.0474 (14)0.0504 (14)0.0656 (16)0.0153 (11)0.0237 (12)0.0118 (12)
C90.0584 (16)0.0539 (15)0.095 (2)0.0273 (13)0.0452 (16)0.0300 (15)
C100.090 (2)0.074 (2)0.121 (3)0.0507 (19)0.073 (2)0.050 (2)
C110.133 (4)0.096 (3)0.192 (5)0.070 (3)0.119 (4)0.090 (3)
C120.130 (4)0.064 (3)0.271 (7)0.046 (3)0.136 (5)0.077 (4)
C130.086 (3)0.054 (2)0.220 (5)0.0158 (18)0.077 (3)0.019 (3)
C140.0608 (18)0.0509 (16)0.134 (3)0.0156 (14)0.0435 (19)0.0099 (17)
C150.156 (4)0.202 (5)0.092 (3)0.127 (4)0.068 (3)0.083 (3)
C160.0652 (19)0.065 (2)0.082 (2)−0.0149 (15)0.0114 (16)−0.0119 (15)
C170.0485 (16)0.080 (2)0.0712 (18)0.0001 (14)0.0050 (13)−0.0130 (15)
C180.0504 (15)0.0569 (15)0.0592 (16)0.0073 (12)0.0039 (12)−0.0108 (12)
C190.0448 (14)0.0523 (14)0.0529 (14)0.0057 (11)0.0074 (11)−0.0083 (11)
C200.0582 (17)0.0572 (17)0.096 (2)0.0125 (14)0.0054 (16)−0.0127 (15)
C210.085 (2)0.0491 (17)0.111 (3)0.0045 (16)0.010 (2)−0.0108 (16)
C220.0442 (14)0.0513 (14)0.0520 (14)0.0100 (11)0.0075 (11)−0.0027 (11)
C230.0418 (13)0.0452 (13)0.0508 (14)0.0087 (10)0.0099 (11)0.0019 (11)
C240.0462 (13)0.0399 (12)0.0468 (13)0.0064 (10)0.0086 (10)0.0009 (10)
C250.0543 (15)0.0483 (14)0.0512 (14)0.0078 (11)0.0158 (12)0.0028 (11)
C260.078 (2)0.0516 (16)0.0759 (19)0.0005 (14)0.0237 (16)−0.0122 (14)
C270.068 (2)0.0605 (18)0.108 (3)−0.0174 (15)0.0229 (18)−0.0240 (17)
C280.0556 (17)0.073 (2)0.107 (2)−0.0082 (14)0.0319 (17)−0.0170 (18)
C290.0504 (15)0.0571 (16)0.0721 (17)0.0047 (12)0.0194 (13)−0.0091 (13)
C300.101 (2)0.072 (2)0.095 (2)0.0188 (18)0.055 (2)−0.0112 (17)

Geometric parameters (Å, °)

Cl1—C11.727 (3)C12—C131.374 (7)
Cl2—C161.733 (3)C12—H120.9300
N1—C71.340 (3)C13—C141.384 (5)
N1—N21.379 (2)C13—H130.9300
N1—H10.8600C14—H140.9300
N2—C81.274 (3)C15—H15A0.9600
N3—C221.344 (3)C15—H15B0.9600
N3—N41.384 (2)C15—H15C0.9600
N3—H30.8600C16—C211.360 (4)
N4—C231.273 (3)C16—C171.361 (4)
O1—C71.222 (3)C17—C181.379 (4)
O2—C101.353 (4)C17—H170.9300
O2—C151.426 (4)C18—C191.379 (3)
O3—C221.224 (3)C18—H180.9300
O4—C251.364 (3)C19—C201.382 (4)
O4—C301.429 (3)C19—C221.485 (3)
C1—C61.356 (5)C20—C211.377 (4)
C1—C21.372 (5)C20—H200.9300
C2—C31.382 (4)C21—H210.9300
C2—H20.9300C23—C241.451 (3)
C3—C41.382 (4)C23—H230.9300
C3—H3A0.9300C24—C291.384 (3)
C4—C51.377 (3)C24—C251.390 (3)
C4—C71.486 (3)C25—C261.378 (3)
C5—C61.377 (3)C26—C271.364 (4)
C5—H50.9300C26—H260.9300
C6—H60.9300C27—C281.365 (4)
C8—C91.453 (3)C27—H270.9300
C8—H80.9300C28—C291.367 (4)
C9—C141.385 (4)C28—H280.9300
C9—C101.402 (4)C29—H290.9300
C10—C111.378 (5)C30—H30A0.9600
C11—C121.363 (7)C30—H30B0.9600
C11—H110.9300C30—H30C0.9600
C7—N1—N2119.90 (19)O2—C15—H15B109.5
C7—N1—H1120.0H15A—C15—H15B109.5
N2—N1—H1120.0O2—C15—H15C109.5
C8—N2—N1113.9 (2)H15A—C15—H15C109.5
C22—N3—N4120.04 (19)H15B—C15—H15C109.5
C22—N3—H3120.0C21—C16—C17121.0 (3)
N4—N3—H3120.0C21—C16—Cl2119.2 (3)
C23—N4—N3114.35 (19)C17—C16—Cl2119.8 (3)
C10—O2—C15118.5 (3)C16—C17—C18119.4 (3)
C25—O4—C30117.5 (2)C16—C17—H17120.3
C6—C1—C2121.2 (3)C18—C17—H17120.3
C6—C1—Cl1119.6 (3)C17—C18—C19120.8 (3)
C2—C1—Cl1119.2 (3)C17—C18—H18119.6
C1—C2—C3119.9 (3)C19—C18—H18119.6
C1—C2—H2120.0C18—C19—C20118.5 (2)
C3—C2—H2120.0C18—C19—C22122.2 (2)
C2—C3—C4119.6 (3)C20—C19—C22119.2 (2)
C2—C3—H3A120.2C21—C20—C19120.5 (3)
C4—C3—H3A120.2C21—C20—H20119.8
C5—C4—C3119.0 (2)C19—C20—H20119.8
C5—C4—C7121.3 (2)C16—C21—C20119.8 (3)
C3—C4—C7119.7 (2)C16—C21—H21120.1
C4—C5—C6121.4 (3)C20—C21—H21120.1
C4—C5—H5119.3O3—C22—N3123.7 (2)
C6—C5—H5119.3O3—C22—C19122.4 (2)
C1—C6—C5118.8 (3)N3—C22—C19113.9 (2)
C1—C6—H6120.6N4—C23—C24120.9 (2)
C5—C6—H6120.6N4—C23—H23119.5
O1—C7—N1123.1 (2)C24—C23—H23119.5
O1—C7—C4122.8 (2)C29—C24—C25117.6 (2)
N1—C7—C4114.1 (2)C29—C24—C23121.7 (2)
N2—C8—C9120.9 (2)C25—C24—C23120.7 (2)
N2—C8—H8119.5O4—C25—C26123.6 (2)
C9—C8—H8119.5O4—C25—C24116.1 (2)
C14—C9—C10119.3 (3)C26—C25—C24120.3 (2)
C14—C9—C8121.9 (3)C27—C26—C25120.3 (3)
C10—C9—C8118.7 (3)C27—C26—H26119.8
O2—C10—C11125.2 (4)C25—C26—H26119.8
O2—C10—C9115.4 (3)C26—C27—C28120.5 (3)
C11—C10—C9119.4 (4)C26—C27—H27119.7
C12—C11—C10120.4 (5)C28—C27—H27119.7
C12—C11—H11119.8C27—C28—C29119.3 (3)
C10—C11—H11119.8C27—C28—H28120.4
C11—C12—C13121.2 (4)C29—C28—H28120.4
C11—C12—H12119.4C28—C29—C24122.0 (2)
C13—C12—H12119.4C28—C29—H29119.0
C12—C13—C14119.3 (4)C24—C29—H29119.0
C12—C13—H13120.3O4—C30—H30A109.5
C14—C13—H13120.3O4—C30—H30B109.5
C13—C14—C9120.4 (4)H30A—C30—H30B109.5
C13—C14—H14119.8O4—C30—H30C109.5
C9—C14—H14119.8H30A—C30—H30C109.5
O2—C15—H15A109.5H30B—C30—H30C109.5

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···O3i0.862.012.840 (3)162
N3—H3···O10.862.142.897 (3)147
N3—H3···N20.862.573.292 (3)142

Symmetry codes: (i) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2433).

References

  • Alhadi, A. A., Ali, H. M., Puvaneswary, S., Robinson, W. T. & Ng, S. W. (2008). Acta Cryst. E64, o1584. [PMC free article] [PubMed]
  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Fun, H.-K., Patil, P. S., Rao, J. N., Kalluraya, B. & Chantrapromma, S. (2008). Acta Cryst. E64, o1707. [PMC free article] [PubMed]
  • Khaledi, H., Mohd Ali, H. & Ng, S. W. (2008). Acta Cryst. E64, o2481. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2004). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Singh, N. K., Singh, M., Srivastava, A. K., Shrivastav, A. & Sharma, R. K. (2007). Acta Cryst. E63, o4895.
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography