PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 April 1; 65(Pt 4): m398–m399.
Published online 2009 March 14. doi:  10.1107/S1600536809008393
PMCID: PMC2968808

Dicyclo­hexyl[N-(3-meth­oxy-2-oxido­benzyl­idene)valinato-κ3 O,N,O′]tin(IV)

Abstract

In the title compound, [Sn(C6H11)2(C13H15NO4)], the Sn atom is five-coordinate and adopts a distorted trigonal-bipyramidal SnNC2O2 geometry with the O atoms in axial positions. The metal atom forms five- and six-membered chelate rings with the O,N,O′-tridentate ligand. The two cyclo­hexyl groups bound to the Sn atom adopt chair conformations, with the Sn—C bonds in equatorial positions and a mean Sn—C distance of 2.138 (3) Å.

Related literature

For background to the chemistry of organotin Schiff base complexes, see: Beltran et al. (2003 [triangle]); Basu Baul et al. (2007 [triangle]); Dakternieks et al. (1998 [triangle]); Tian et al. (2005 [triangle], 2006 [triangle], 2007 [triangle], 2009 [triangle]). For related structures, see: Li & Tian (2008 [triangle]); Tian et al. (2004 [triangle], 2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m398-scheme1.jpg

Experimental

Crystal data

  • [Sn(C6H11)2(C13H15NO4)]
  • M r = 534.25
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m398-efi1.jpg
  • a = 9.5354 (5) Å
  • b = 10.0011 (6) Å
  • c = 25.7662 (15) Å
  • β = 94.345 (1)°
  • V = 2450.1 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.07 mm−1
  • T = 295 K
  • 0.14 × 0.10 × 0.10 mm

Data collection

  • Bruker SMART APEX area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2002 [triangle]) T min = 0.864, T max = 0.900
  • 18670 measured reflections
  • 4808 independent reflections
  • 3858 reflections with I > 2σ(I)
  • R int = 0.025

Refinement

  • R[F 2 > 2σ(F 2)] = 0.033
  • wR(F 2) = 0.077
  • S = 1.04
  • 4808 reflections
  • 280 parameters
  • H-atom parameters constrained
  • Δρmax = 0.57 e Å−3
  • Δρmin = −0.34 e Å−3

Data collection: SMART (Bruker, 2002 [triangle]); cell refinement: SAINT (Bruker, 2002 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Selected geometric parameters (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809008393/sj2591sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809008393/sj2591Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Science Foundation of Binzhou University for supporting this work (grant No. BZXYQNLG200820).

supplementary crystallographic information

Comment

Diorganotin complexes with Schiff bases derived from α-amino acids continue to received attention because of their structural variety and biological activities (Beltran et al., 2003; Basu Baul et al., 2007; Dakternieks et al., 1998; Tian et al., 2005, 2006, 2007, 2009). The structures of three dicyclohexyltin complexes with the Schiff base ligand, [N-(5-chloro-2-oxidophenylmethylene)isoleucinato]dicyclohexyltin(IV) (Tian et al., 2004), [N-(3,5-dibromo-2-oxidophenylmethylene)alaninato]dicyclohexyltin(IV) (Tian et al., 2007) and [N-(5-chloro-2-oxidophenylmethylene)valinato]dicyclohexyltin(IV) (Li & Tian, 2008), have been reported. As a continuation of these studies, the structure of the title compound, (I), is reported here.

The coordination geometry of the tin atom in (I) is distorted trigonal bipyramidal with two cyclohexyl groups and the imino N1 atom occupying the equatorial positions and the axial positions being occupied by a unidentate carboxylate O1 atom and phenolate O3 atom (Fig. 1). The tin atom is 0.049 (2) Å out of the NC2 trigonal plane in the direction of the O3 atom. The bond length Sn1—O1 (2.157 (2) Å) was longer than that of Sn1—O3 (2.1085 (19) Å). The bond angle O1—Sn1—O3 was 157.22 (8)°, slightly larger than those found in [N-(5-chloro-2-oxidophenylmethylene)isoleucinato]dicyclohexyltin(IV) [153.84 (12)°] (Tian et al., 2004), [N-(3,5-dibromo-2-oxidophenylmethylene)alaninato]dicyclohexyltin(IV) [154.9 (1)°] (Tian et al., 2007) and [N-(5-chloro-2-oxidophenylmethylene)valinato]dicyclohexyltin(IV) [155.75 (12)°] (Li & Tian, 2008). The two cyclohexyl groups bound to the tin atom adopt chair conformations with the Sn—C bonds in equatorial positions with a mean distance of 2.138 (3) Å. The monodentate mode of coordination of the carboxylate is reflected in the disparate C23—O1 and C23—O2 bond lengths of 1.289 (4) and 1.217 (4) Å, respectively.

Experimental

The title compound was prepared by the reaction of dicyclohexyltin dichloride (0.71 g, 2 mmol) with potassium N-(3-methoxy-2-hydroxyphenylmethylene)valinate (0.54 g, 2 mmol) in the presence of Et3N (0.20 g, 2 mmol) in methanol (30 ml). The reaction mixture was refluxed for 2 h and filtered. The yellow solid, (I),obtained by removal of solvent under reduced pressure, was recrystallized from methanol. Crystals of (I) suitable for X-ray measurements were obtained from dichloromethane-hexane (1:1, V/V) by slow evaporation at room temperature (yield 70%, m.p. 477–478 K).

Refinement

H atoms were placed at calculated positions (C—H = 0.93–0.98 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Figures

Fig. 1.
The structure of (I) with displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity.

Crystal data

[Sn(C6H11)2(C13H15NO4)]F(000) = 1104
Mr = 534.25Dx = 1.448 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6982 reflections
a = 9.5354 (5) Åθ = 2.3–27.2°
b = 10.0011 (6) ŵ = 1.07 mm1
c = 25.7662 (15) ÅT = 295 K
β = 94.345 (1)°Block, yellow
V = 2450.1 (2) Å30.14 × 0.10 × 0.10 mm
Z = 4

Data collection

Bruker SMART APEX area-detector diffractometer4808 independent reflections
Radiation source: fine-focus sealed tube3858 reflections with I > 2σ(I)
graphiteRint = 0.025
[var phi] and ω scansθmax = 26.0°, θmin = 1.6°
Absorption correction: multi-scan (SADABS; Bruker, 2002)h = −11→11
Tmin = 0.864, Tmax = 0.900k = −12→12
18670 measured reflectionsl = −31→31

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.077H-atom parameters constrained
S = 1.04w = 1/[σ2(Fo2) + (0.0302P)2 + 2.2424P] where P = (Fo2 + 2Fc2)/3
4808 reflections(Δ/σ)max = 0.001
280 parametersΔρmax = 0.57 e Å3
0 restraintsΔρmin = −0.34 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Sn10.13269 (2)−0.000285 (19)0.145122 (7)0.03534 (8)
N10.0746 (2)0.2013 (2)0.16634 (9)0.0356 (5)
O10.0070 (2)−0.0239 (2)0.21069 (8)0.0469 (5)
O30.2487 (2)0.1017 (2)0.09093 (8)0.0438 (5)
O40.4527 (3)0.1480 (2)0.03098 (9)0.0557 (6)
O2−0.1148 (3)0.0751 (2)0.26995 (8)0.0583 (6)
C190.2495 (3)0.3275 (3)0.12149 (11)0.0380 (7)
C130.2988 (3)0.2235 (3)0.09125 (11)0.0369 (6)
C25−0.0502 (3)0.0784 (3)0.23099 (12)0.0431 (7)
C140.4080 (3)0.2540 (3)0.05838 (12)0.0421 (7)
C70.3103 (3)−0.0932 (3)0.18570 (12)0.0437 (7)
H70.2734−0.16740.20540.052*
C21−0.0371 (3)0.2112 (3)0.20312 (11)0.0405 (7)
H21−0.00900.27950.22920.049*
C200.1414 (3)0.3096 (3)0.15649 (11)0.0407 (7)
H200.11600.38560.17440.049*
C10.0021 (3)−0.1073 (3)0.08792 (11)0.0389 (7)
H1−0.0630−0.04320.07030.047*
C160.4606 (4)0.3813 (3)0.05633 (13)0.0515 (8)
H160.53190.39960.03470.062*
C180.3057 (4)0.4573 (3)0.11829 (13)0.0513 (8)
H180.27180.52570.13840.062*
C2−0.0854 (4)−0.2153 (3)0.11246 (13)0.0536 (8)
H2A−0.0232−0.27770.13160.064*
H2B−0.1453−0.17420.13680.064*
C24−0.2320 (4)0.1559 (4)0.13339 (15)0.0630 (10)
H24A−0.23230.06660.14710.095*
H24B−0.17100.16000.10550.095*
H24C−0.32570.18030.12060.095*
C60.0909 (4)−0.1689 (4)0.04705 (13)0.0544 (9)
H6A0.1404−0.09840.03010.065*
H6B0.1605−0.22820.06410.065*
C170.4089 (4)0.4834 (3)0.08615 (15)0.0585 (9)
H170.44500.56950.08410.070*
C50.0011 (4)−0.2466 (4)0.00641 (13)0.0648 (10)
H5A−0.0607−0.1852−0.01350.078*
H5B0.0614−0.2891−0.01740.078*
C150.5593 (5)0.1721 (4)−0.00362 (16)0.0716 (12)
H15A0.58180.0900−0.02040.107*
H15B0.64180.20610.01560.107*
H15C0.52610.2363−0.02940.107*
C100.6078 (4)−0.1408 (4)0.21768 (18)0.0750 (12)
H10A0.6546−0.07090.19940.090*
H10B0.6794−0.19240.23760.090*
C22−0.1800 (3)0.2520 (3)0.17606 (13)0.0486 (8)
H22−0.24830.24900.20260.058*
C23−0.1805 (4)0.3944 (4)0.15532 (16)0.0703 (11)
H23A−0.27180.41490.13900.105*
H23B−0.11130.40280.13030.105*
H23C−0.15890.45530.18360.105*
C3−0.1757 (4)−0.2901 (4)0.07076 (15)0.0634 (10)
H3A−0.2281−0.35970.08700.076*
H3B−0.2427−0.22870.05340.076*
C80.4100 (4)−0.1546 (4)0.14941 (15)0.0752 (12)
H8A0.4481−0.08470.12850.090*
H8B0.3586−0.21650.12610.090*
C110.5120 (5)−0.0791 (6)0.2538 (2)0.1082 (19)
H11A0.5648−0.01660.27650.130*
H11B0.4752−0.14820.27540.130*
C4−0.0867 (4)−0.3524 (4)0.03086 (15)0.0636 (10)
H4A−0.0253−0.41960.04750.076*
H4B−0.1472−0.39590.00400.076*
C90.5308 (5)−0.2287 (5)0.17957 (18)0.0885 (15)
H9A0.4934−0.30440.19760.106*
H9B0.5951−0.26260.15530.106*
C120.3897 (5)−0.0058 (5)0.22460 (19)0.0894 (16)
H12A0.32600.02660.24940.107*
H12B0.42570.07110.20690.107*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Sn10.04106 (12)0.03172 (11)0.03376 (12)−0.00233 (9)0.00626 (8)0.00054 (9)
N10.0449 (14)0.0325 (13)0.0302 (12)−0.0001 (11)0.0070 (10)0.0002 (10)
O10.0621 (14)0.0376 (12)0.0432 (12)0.0028 (10)0.0181 (11)0.0065 (9)
O30.0596 (13)0.0322 (11)0.0419 (11)−0.0084 (10)0.0176 (10)−0.0006 (9)
O40.0687 (15)0.0456 (13)0.0569 (14)−0.0032 (11)0.0323 (12)0.0013 (11)
O20.0775 (16)0.0562 (15)0.0449 (13)0.0047 (13)0.0294 (12)0.0076 (11)
C190.0478 (17)0.0313 (15)0.0347 (15)−0.0052 (13)0.0023 (13)0.0023 (12)
C130.0415 (16)0.0360 (16)0.0328 (15)−0.0029 (13)0.0002 (12)0.0041 (12)
C250.0475 (17)0.0476 (19)0.0344 (16)0.0008 (15)0.0036 (13)0.0056 (14)
C140.0479 (18)0.0403 (17)0.0389 (16)−0.0024 (14)0.0079 (14)0.0069 (13)
C70.0422 (17)0.0491 (18)0.0397 (17)−0.0025 (14)0.0020 (13)0.0116 (14)
C210.0497 (18)0.0377 (16)0.0352 (16)0.0014 (14)0.0111 (13)−0.0014 (13)
C200.0511 (18)0.0322 (16)0.0390 (16)0.0006 (13)0.0044 (14)−0.0040 (13)
C10.0394 (16)0.0370 (16)0.0403 (16)−0.0031 (13)0.0039 (13)−0.0018 (13)
C160.053 (2)0.050 (2)0.053 (2)−0.0122 (16)0.0121 (16)0.0095 (16)
C180.069 (2)0.0362 (16)0.0493 (19)−0.0062 (16)0.0094 (17)−0.0008 (14)
C20.057 (2)0.050 (2)0.056 (2)−0.0115 (16)0.0162 (16)−0.0037 (16)
C240.053 (2)0.065 (2)0.070 (2)0.0019 (18)−0.0031 (18)0.005 (2)
C60.056 (2)0.062 (2)0.0471 (19)−0.0125 (17)0.0121 (16)−0.0123 (17)
C170.076 (2)0.0365 (19)0.065 (2)−0.0181 (17)0.0140 (19)0.0019 (16)
C50.078 (3)0.068 (3)0.049 (2)−0.011 (2)0.0044 (19)−0.0184 (18)
C150.083 (3)0.066 (3)0.072 (3)−0.005 (2)0.045 (2)−0.003 (2)
C100.047 (2)0.082 (3)0.095 (3)−0.001 (2)−0.004 (2)0.014 (3)
C220.0503 (19)0.0499 (19)0.0473 (18)0.0109 (15)0.0135 (15)0.0059 (15)
C230.075 (3)0.053 (2)0.081 (3)0.019 (2)−0.001 (2)0.012 (2)
C30.057 (2)0.056 (2)0.077 (3)−0.0166 (18)0.0062 (19)−0.009 (2)
C80.078 (3)0.084 (3)0.061 (2)0.033 (2)−0.011 (2)−0.021 (2)
C110.093 (3)0.133 (5)0.091 (3)0.037 (3)−0.045 (3)−0.041 (3)
C40.071 (2)0.051 (2)0.068 (2)−0.0086 (19)−0.003 (2)−0.0153 (19)
C90.072 (3)0.097 (4)0.094 (3)0.036 (3)−0.017 (2)−0.019 (3)
C120.085 (3)0.097 (4)0.082 (3)0.026 (3)−0.026 (2)−0.044 (3)

Geometric parameters (Å, °)

Sn1—O32.1085 (19)C24—H24B0.9600
Sn1—C72.135 (3)C24—H24C0.9600
Sn1—C12.142 (3)C6—C51.516 (4)
Sn1—O12.157 (2)C6—H6A0.9700
Sn1—N12.172 (2)C6—H6B0.9700
N1—C201.292 (4)C17—H170.9300
N1—C211.481 (3)C5—C41.515 (5)
O1—C251.289 (4)C5—H5A0.9700
O3—C131.309 (3)C5—H5B0.9700
O4—C141.360 (4)C15—H15A0.9600
O4—C151.422 (4)C15—H15B0.9600
O2—C251.217 (4)C15—H15C0.9600
C19—C131.402 (4)C10—C91.472 (6)
C19—C181.409 (4)C10—C111.487 (6)
C19—C201.431 (4)C10—H10A0.9700
C13—C141.424 (4)C10—H10B0.9700
C25—C211.520 (4)C22—C231.521 (5)
C14—C161.370 (4)C22—H220.9800
C7—C121.492 (5)C23—H23A0.9600
C7—C81.512 (5)C23—H23B0.9600
C7—H70.9800C23—H23C0.9600
C21—C221.538 (4)C3—C41.516 (5)
C21—H210.9800C3—H3A0.9700
C20—H200.9300C3—H3B0.9700
C1—C61.530 (4)C8—C91.531 (5)
C1—C21.530 (4)C8—H8A0.9700
C1—H10.9800C8—H8B0.9700
C16—C171.390 (5)C11—C121.527 (6)
C16—H160.9300C11—H11A0.9700
C18—C171.359 (5)C11—H11B0.9700
C18—H180.9300C4—H4A0.9700
C2—C31.522 (5)C4—H4B0.9700
C2—H2A0.9700C9—H9A0.9700
C2—H2B0.9700C9—H9B0.9700
C24—C221.515 (5)C12—H12A0.9700
C24—H24A0.9600C12—H12B0.9700
O3—Sn1—C795.63 (10)C1—C6—H6B109.3
O3—Sn1—C195.31 (9)H6A—C6—H6B108.0
C7—Sn1—C1121.20 (12)C18—C17—C16119.9 (3)
O3—Sn1—O1157.22 (8)C18—C17—H17120.0
C7—Sn1—O192.06 (10)C16—C17—H17120.0
C1—Sn1—O198.96 (10)C4—C5—C6111.8 (3)
O3—Sn1—N182.79 (8)C4—C5—H5A109.3
C7—Sn1—N1119.27 (11)C6—C5—H5A109.3
C1—Sn1—N1119.38 (10)C4—C5—H5B109.3
O1—Sn1—N174.75 (8)C6—C5—H5B109.3
C20—N1—C21117.3 (2)H5A—C5—H5B107.9
C20—N1—Sn1126.18 (19)O4—C15—H15A109.5
C21—N1—Sn1115.66 (17)O4—C15—H15B109.5
C25—O1—Sn1120.55 (19)H15A—C15—H15B109.5
C13—O3—Sn1130.97 (18)O4—C15—H15C109.5
C14—O4—C15117.4 (3)H15A—C15—H15C109.5
C13—C19—C18120.4 (3)H15B—C15—H15C109.5
C13—C19—C20123.1 (3)C9—C10—C11111.5 (4)
C18—C19—C20116.6 (3)C9—C10—H10A109.3
O3—C13—C19123.8 (3)C11—C10—H10A109.3
O3—C13—C14118.6 (3)C9—C10—H10B109.3
C19—C13—C14117.6 (3)C11—C10—H10B109.3
O2—C25—O1124.7 (3)H10A—C10—H10B108.0
O2—C25—C21118.6 (3)C24—C22—C23110.3 (3)
O1—C25—C21116.7 (3)C24—C22—C21113.0 (3)
O4—C14—C16125.1 (3)C23—C22—C21112.7 (3)
O4—C14—C13114.4 (3)C24—C22—H22106.8
C16—C14—C13120.5 (3)C23—C22—H22106.8
C12—C7—C8110.1 (3)C21—C22—H22106.8
C12—C7—Sn1114.7 (2)C22—C23—H23A109.5
C8—C7—Sn1112.7 (2)C22—C23—H23B109.5
C12—C7—H7106.3H23A—C23—H23B109.5
C8—C7—H7106.3C22—C23—H23C109.5
Sn1—C7—H7106.3H23A—C23—H23C109.5
N1—C21—C25109.4 (2)H23B—C23—H23C109.5
N1—C21—C22112.5 (2)C4—C3—C2111.4 (3)
C25—C21—C22110.1 (3)C4—C3—H3A109.3
N1—C21—H21108.2C2—C3—H3A109.3
C25—C21—H21108.2C4—C3—H3B109.3
C22—C21—H21108.2C2—C3—H3B109.3
N1—C20—C19128.2 (3)H3A—C3—H3B108.0
N1—C20—H20115.9C7—C8—C9111.5 (3)
C19—C20—H20115.9C7—C8—H8A109.3
C6—C1—C2110.3 (3)C9—C8—H8A109.3
C6—C1—Sn1110.57 (19)C7—C8—H8B109.3
C2—C1—Sn1112.0 (2)C9—C8—H8B109.3
C6—C1—H1107.9H8A—C8—H8B108.0
C2—C1—H1107.9C10—C11—C12112.0 (4)
Sn1—C1—H1107.9C10—C11—H11A109.2
C14—C16—C17121.0 (3)C12—C11—H11A109.2
C14—C16—H16119.5C10—C11—H11B109.2
C17—C16—H16119.5C12—C11—H11B109.2
C17—C18—C19120.6 (3)H11A—C11—H11B107.9
C17—C18—H18119.7C5—C4—C3110.5 (3)
C19—C18—H18119.7C5—C4—H4A109.5
C3—C2—C1110.6 (3)C3—C4—H4A109.5
C3—C2—H2A109.5C5—C4—H4B109.5
C1—C2—H2A109.5C3—C4—H4B109.5
C3—C2—H2B109.5H4A—C4—H4B108.1
C1—C2—H2B109.5C10—C9—C8111.6 (4)
H2A—C2—H2B108.1C10—C9—H9A109.3
C22—C24—H24A109.5C8—C9—H9A109.3
C22—C24—H24B109.5C10—C9—H9B109.3
H24A—C24—H24B109.5C8—C9—H9B109.3
C22—C24—H24C109.5H9A—C9—H9B108.0
H24A—C24—H24C109.5C7—C12—C11112.3 (4)
H24B—C24—H24C109.5C7—C12—H12A109.1
C5—C6—C1111.6 (3)C11—C12—H12A109.1
C5—C6—H6A109.3C7—C12—H12B109.1
C1—C6—H6A109.3C11—C12—H12B109.1
C5—C6—H6B109.3H12A—C12—H12B107.9
O3—Sn1—N1—C20−20.0 (2)O2—C25—C21—N1164.9 (3)
C7—Sn1—N1—C2072.5 (3)O1—C25—C21—N1−16.1 (4)
C1—Sn1—N1—C20−112.0 (3)O2—C25—C21—C22−70.9 (4)
O1—Sn1—N1—C20156.2 (3)O1—C25—C21—C22108.0 (3)
O3—Sn1—N1—C21171.3 (2)C21—N1—C20—C19−177.8 (3)
C7—Sn1—N1—C21−96.3 (2)Sn1—N1—C20—C1913.6 (5)
C1—Sn1—N1—C2179.2 (2)C13—C19—C20—N10.6 (5)
O1—Sn1—N1—C21−12.62 (19)C18—C19—C20—N1−179.7 (3)
O3—Sn1—O1—C2513.5 (4)O3—Sn1—C1—C646.7 (2)
C7—Sn1—O1—C25123.3 (2)C7—Sn1—C1—C6−53.2 (3)
C1—Sn1—O1—C25−114.6 (2)O1—Sn1—C1—C6−151.1 (2)
N1—Sn1—O1—C253.5 (2)N1—Sn1—C1—C6131.4 (2)
C7—Sn1—O3—C13−94.7 (3)O3—Sn1—C1—C2170.2 (2)
C1—Sn1—O3—C13143.1 (3)C7—Sn1—C1—C270.4 (2)
O1—Sn1—O3—C1314.4 (4)O1—Sn1—C1—C2−27.6 (2)
N1—Sn1—O3—C1324.1 (3)N1—Sn1—C1—C2−105.1 (2)
Sn1—O3—C13—C19−20.1 (4)O4—C14—C16—C17−179.5 (3)
Sn1—O3—C13—C14161.1 (2)C13—C14—C16—C170.0 (5)
C18—C19—C13—O3−177.8 (3)C13—C19—C18—C17−0.4 (5)
C20—C19—C13—O32.0 (5)C20—C19—C18—C17179.8 (3)
C18—C19—C13—C141.0 (4)C6—C1—C2—C3−55.8 (4)
C20—C19—C13—C14−179.3 (3)Sn1—C1—C2—C3−179.4 (2)
Sn1—O1—C25—O2−175.0 (3)C2—C1—C6—C554.9 (4)
Sn1—O1—C25—C216.1 (4)Sn1—C1—C6—C5179.3 (3)
C15—O4—C14—C16−2.0 (5)C19—C18—C17—C16−0.4 (6)
C15—O4—C14—C13178.5 (3)C14—C16—C17—C180.6 (6)
O3—C13—C14—O4−2.4 (4)C1—C6—C5—C4−55.1 (4)
C19—C13—C14—O4178.8 (3)N1—C21—C22—C2458.4 (4)
O3—C13—C14—C16178.0 (3)C25—C21—C22—C24−63.9 (3)
C19—C13—C14—C16−0.8 (4)N1—C21—C22—C23−67.5 (4)
O3—Sn1—C7—C1280.8 (3)C25—C21—C22—C23170.2 (3)
C1—Sn1—C7—C12−179.5 (3)C1—C2—C3—C457.4 (4)
O1—Sn1—C7—C12−77.7 (3)C12—C7—C8—C954.6 (5)
N1—Sn1—C7—C12−4.0 (3)Sn1—C7—C8—C9−176.1 (3)
O3—Sn1—C7—C8−46.1 (3)C9—C10—C11—C12−54.3 (6)
C1—Sn1—C7—C853.6 (3)C6—C5—C4—C355.4 (4)
O1—Sn1—C7—C8155.4 (3)C2—C3—C4—C5−56.7 (4)
N1—Sn1—C7—C8−131.0 (3)C11—C10—C9—C855.3 (6)
C20—N1—C21—C25−151.0 (3)C7—C8—C9—C10−56.0 (5)
Sn1—N1—C21—C2518.8 (3)C8—C7—C12—C11−53.9 (5)
C20—N1—C21—C2286.3 (3)Sn1—C7—C12—C11177.8 (4)
Sn1—N1—C21—C22−103.9 (2)C10—C11—C12—C754.3 (7)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2591).

References

  • Basu Baul, T. S., Masharing, C., Ruisi, G., Jirasko, R., Holcapek, M., De Vos, D., Wolstenholme, D. & Linden, A. (2007). J. Organomet. Chem.692, 4849–4862.
  • Beltran, H. I., Zamudio-Rivera, L. S., Mancilla, T., Santillan, R. & Farfan, N. (2003). Chem. Eur. J.9, 2291–2306. [PubMed]
  • Bruker (2002). SADABS, SAINT and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  • Dakternieks, D., Basu Baul, T. S., Dutta, S. & Tiekink, E. R. T. (1998). Organometallics, 17, 3058–3062.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Li, J.-P. & Tian, L.-J. (2008). Acta Cryst. E64, m98. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Tian, L., Liu, X., Shang, Z., Li, D. & Yu, Q. (2004). Appl. Organomet. Chem.18, 483–484.
  • Tian, L., Qian, B., Sun, Y., Zheng, X., Yang, M., Li, H. & Liu, X. (2005). Appl. Organomet. Chem.19, 980–987.
  • Tian, L., Shang, Z., Zheng, X., Sun, Y., You, Y., Qian, B. & Liu, X. (2006). Appl. Organomet. Chem.20, 74–80.
  • Tian, L., Sun, Y., Zheng, X., Liu, X., You, Y., Liu, X. & Qian, B. (2007). Chin. J. Chem.25, 312–318.
  • Tian, L., Yang, H., Zheng, X., Ni, Z., Yan, D., Tu, L. & Jiang, J. (2009). Appl. Organomet. Chem.22, 24–31.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography