PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 April 1; 65(Pt 4): m460.
Published online 2009 March 28. doi:  10.1107/S1600536809011076
PMCID: PMC2968806

Di-μ-chlorido-bis­{aqua­chlorido[2,2′-thio­bis(pyridine N-oxide)-κO]copper(II)}

Abstract

The crystal structure of the title compound, [Cu2Cl4(C10H8N2O2S)2(H2O)2], comprises neutral centrosymmetric μ-chloride-bridged dinuclear units. Each CuII ion is penta­coordinated by three chloride ligands, a pyridine N-oxide O atom and a water mol­ecule. Intra- and inter­molecular O—H(...)O hydrogen bonds occur between the coordinated water mol­ecules and the uncoordinated and coordinated pyridine N-oxide groups of the 2,2′-thio­bis(pyridine N-oxide) ligands, respectively.

Related literature

For the potential of pyridine N-oxide-based building blocks in the construction of coordination polymers and crystal engin­eering, see: Sun et al. (2008 [triangle]) and references cited therein. For details of hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]). For a copper-catalysed example of in situ S—S and S—Csp 2 bond cleavage and rearrangement of an related disulfide, see: Wang et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m460-scheme1.jpg

Experimental

Crystal data

  • [Cu2Cl4(C10H8N2O2S)2(H2O)2]
  • M r = 745.40
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m460-efi1.jpg
  • a = 6.7552 (18) Å
  • b = 11.430 (3) Å
  • c = 17.375 (3) Å
  • β = 95.516 (17)°
  • V = 1335.4 (6) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 2.19 mm−1
  • T = 294 K
  • 0.27 × 0.21 × 0.19 mm

Data collection

  • Siemens P4 four-circle diffractometer
  • Absorption correction: ψ scan (ABSPsiScan in PLATON; Spek, 2009 [triangle]) T min = 0.529, T max = 0.663
  • 3316 measured reflections
  • 2349 independent reflections
  • 1736 reflections with I > 2(I)
  • R int = 0.058
  • 3 standard reflections every 97 reflections intensity decay: none

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040
  • wR(F 2) = 0.088
  • S = 1.02
  • 2349 reflections
  • 178 parameters
  • 2 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.40 e Å−3
  • Δρmin = −0.53 e Å−3

Data collection: XSCANS (Bruker, 1999 [triangle]); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: DIAMOND (Brandenburg, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809011076/dn2439sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809011076/dn2439Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

Professor William S. Sheldrick is gratefully acknowledged for generous support. RWS thanks Dr Tobias van Almsick for helpful discussions.

supplementary crystallographic information

Comment

Pyridine-N-oxide based ligands have attracted a considerable interest in crystal engineering and the synthesis of coordination polymers (Sun et al., 2008).

The title compound, namely bis(µ-chlorido)-diaqua-dichlorido- bis(2,2'-thiobis(pyridine-N-oxide-κO)-dicopper(II), is a neutral dinuclear complex with a central Cu2Cl2-ring exhibiting Ci point symmetry (Fig. 1). The unit cell contains two molecules which reside on a crystallographic centre of inversion. Each Cu2+ ion adopts a distorted square-pyramidal coordination sphere. Two equatorial cis-coordination sites are occupied by the two bridging chlorido ligands. Another chlorido ligand in monodentate coordination mode and an oxygen atom of the pyridine-N-oxide group of the 2,2'-thiobis(pyridine-N-oxide) are located at the remaining two cis-sites. A water molecule binds to the axial position. The molecular geometry parameters are within normal ranges. The dihedral angle Cu(µ-Cl)2/CuClO(N-oxide) is 17.0 (1)°. The angle between the mean planes of the rings N1—C6 and N11—C16 is 66.4 (1)°.

The coordinated water molecule forms an intramolecular hydrogen bond to O11 of the non-coordinating pyridine-N-oxide group of the 2,2'-thiobis(pyridine-N-oxide) ligand. The graph set here is S(12) (Bernstein et al., 1995). The second water hydrogen atom is involved in an intermolecular hydrogen bond to O1 of the coordinating pyridine-N-oxide group with a centrosymmetric R22(8) motif. This leads to the formation of infitine chains via hydrogen bonding extending in the [100] direction with a period corresponding to the crystallographic a axis. Hydrogen bonding details are listed in Table 2.

To the best of our knowledge the title compound is the first coordination compound and the first crystal structure comprising 2,2-thiobis(pyridine-N-oxide).

Experimental

A dark-yellow crystal of the title compound suitable for X-ray diffraction was obtained when equimolar amounts of CuCl2 and 2,2'-dithiobis(pyridine-N-oxide) (Aldrich) were dissolved in methanol and the solution was left at ambient temperature. The crystal was found whithin dark-green unidentified material. The origin of the new 2,2'-thiobis(pyridine-N-oxide) ligand is not clear. Either a trace impurity in the starting material or an in situ cleavage and rearrangement of S—S and S—C(sp2) bonds can be considered. A copper catalysed example of the latter with an related disulfide was reported by Wang et al. (2007). As far we can ascertain no synthetic route to 2,2'-thiobis(pyridine-N-oxide) has been reported in the literature.

Refinement

The crystal structure was refined by full-matrix least-squares refinement on F2. Anisotropic displacement parameters were introduced for all non-hydrogen atoms. Hydrogen atoms were placed at geometrically positions and refined with the appropriate riding model. The water hydrogen atoms were located in a difference Fourier synthesis and refined with O—H distances of 0.82 (2) Å and Uiso 1.2 times that of the parent oxygen atom.

Figures

Fig. 1.
ORTEP diagram of the title compound with 50% probability of the displacement ellipsoids. Hydrogen atoms are drawn at arbitrary size. Hydrogen bonds are represented by dashed lines. For the symmetry codes see Table 1.
Fig. 2.
Hydrogen bonding interactions between to adjacent molecules in the crystal structure of the title compound. Hydrogen bonds are represented by dashed lines. For the symmetry codes see Table 2.

Crystal data

[Cu2Cl4(C10H8N2O2S)2(H2O)2]F(000) = 748
Mr = 745.40Dx = 1.854 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 6.7552 (18) Åθ = 5.1–18.0°
b = 11.430 (3) ŵ = 2.19 mm1
c = 17.375 (3) ÅT = 294 K
β = 95.516 (17)°Prism, dark-yellow
V = 1335.4 (6) Å30.27 × 0.21 × 0.19 mm
Z = 2

Data collection

Siemens P4 four-circle diffractometer1736 reflections with I > 2(I)
Radiation source: fine-focus sealed tubeRint = 0.058
graphiteθmax = 25.0°, θmin = 2.1°
ω scansh = −8→1
Absorption correction: ψ scan (ABSPsiScan in PLATON; Spek, 2009)k = −1→13
Tmin = 0.529, Tmax = 0.663l = −20→20
3316 measured reflections3 standard reflections every 97 reflections
2349 independent reflections intensity decay: none

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H atoms treated by a mixture of independent and constrained refinement
S = 1.01w = 1/[σ2(Fo2) + (0.0347P)2] where P = (Fo2 + 2Fc2)/3
2349 reflections(Δ/σ)max < 0.001
178 parametersΔρmax = 0.40 e Å3
2 restraintsΔρmin = −0.53 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu10.36057 (7)0.52270 (5)0.07537 (3)0.02340 (16)
Cl10.42569 (17)0.52142 (11)0.20449 (6)0.0365 (3)
Cl20.34708 (15)0.57187 (10)−0.05629 (6)0.0273 (3)
S10.42443 (17)0.79699 (11)0.11518 (7)0.0343 (3)
O10.1176 (4)0.6210 (3)0.07498 (15)0.0272 (7)
O20.1784 (5)0.3623 (3)0.05848 (18)0.0325 (8)
H2A0.086 (5)0.372 (4)0.026 (2)0.039*
H2B0.231 (7)0.305 (3)0.040 (2)0.039*
N10.0804 (5)0.6857 (3)0.13620 (19)0.0250 (8)
C2−0.0843 (6)0.6616 (4)0.1706 (2)0.0290 (11)
H2−0.16830.60130.15210.035*
C3−0.1287 (7)0.7269 (4)0.2335 (3)0.0378 (12)
H3−0.24350.71080.25720.045*
C4−0.0060 (7)0.8142 (4)0.2611 (3)0.0386 (12)
H4−0.03420.85690.30430.046*
C50.1619 (7)0.8391 (4)0.2242 (3)0.0352 (11)
H50.24610.89960.24230.042*
C60.2049 (6)0.7744 (4)0.1606 (2)0.0250 (10)
O110.6518 (4)0.8360 (3)0.00176 (19)0.0412 (9)
N110.4647 (5)0.8581 (3)−0.0254 (2)0.0315 (9)
C120.3202 (7)0.8442 (4)0.0239 (2)0.0276 (11)
C130.1254 (6)0.8656 (4)−0.0018 (2)0.0292 (11)
H130.02670.85660.03150.035*
C140.0761 (7)0.9005 (4)−0.0771 (3)0.0378 (12)
H14−0.05600.9141−0.09510.045*
C150.2246 (8)0.9151 (4)−0.1254 (3)0.0425 (13)
H150.19300.9400−0.17610.051*
C160.4167 (8)0.8932 (4)−0.0992 (3)0.0395 (13)
H160.51610.9024−0.13220.047*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.0210 (3)0.0273 (3)0.0224 (3)0.0022 (3)0.0041 (2)−0.0021 (2)
Cl10.0376 (7)0.0499 (7)0.0224 (6)0.0122 (6)0.0045 (5)0.0007 (5)
Cl20.0246 (6)0.0331 (6)0.0249 (6)0.0063 (5)0.0050 (4)−0.0017 (5)
S10.0216 (6)0.0443 (7)0.0370 (7)−0.0053 (6)0.0028 (5)0.0023 (6)
O10.0223 (16)0.0342 (17)0.0250 (16)0.0056 (14)0.0018 (13)−0.0109 (14)
O20.0259 (19)0.0323 (19)0.038 (2)−0.0022 (16)−0.0030 (15)−0.0023 (16)
N10.0210 (19)0.029 (2)0.0253 (19)0.0026 (17)0.0042 (16)−0.0004 (17)
C20.021 (2)0.031 (3)0.036 (3)−0.001 (2)0.006 (2)0.000 (2)
C30.029 (3)0.053 (3)0.033 (3)0.006 (3)0.008 (2)−0.001 (2)
C40.046 (3)0.042 (3)0.030 (3)0.008 (3)0.011 (2)−0.006 (2)
C50.041 (3)0.028 (3)0.037 (3)−0.005 (2)−0.001 (2)−0.005 (2)
C60.019 (2)0.030 (2)0.027 (2)0.001 (2)0.0029 (19)0.0001 (19)
O110.0196 (17)0.047 (2)0.059 (2)−0.0015 (16)0.0111 (16)−0.0083 (17)
N110.023 (2)0.026 (2)0.047 (2)−0.0057 (17)0.0112 (18)−0.0080 (19)
C120.028 (3)0.022 (2)0.035 (3)−0.008 (2)0.011 (2)−0.007 (2)
C130.020 (2)0.032 (3)0.037 (3)−0.002 (2)0.012 (2)−0.002 (2)
C140.037 (3)0.037 (3)0.040 (3)−0.002 (2)0.002 (2)0.007 (2)
C150.048 (3)0.049 (3)0.030 (3)−0.006 (3)0.007 (2)0.002 (2)
C160.049 (3)0.045 (3)0.028 (3)−0.010 (3)0.020 (2)−0.004 (2)

Geometric parameters (Å, °)

Cu1—O11.988 (3)C3—H30.9300
Cu1—O22.212 (3)C4—C51.386 (6)
Cu1—Cl12.2443 (12)C4—H40.9300
Cu1—Cl2i2.3031 (12)C5—C61.384 (6)
Cu1—Cl22.3489 (12)C5—H50.9300
Cl2—Cu1i2.3031 (12)O11—N111.331 (5)
S1—C121.758 (5)N11—C161.353 (6)
S1—C61.764 (4)N11—C121.369 (5)
O1—N11.339 (4)C12—C131.370 (6)
O2—H2A0.81 (2)C13—C141.378 (6)
O2—H2B0.82 (2)C13—H130.9300
N1—C21.341 (5)C14—C151.379 (6)
N1—C61.359 (5)C14—H140.9300
C2—C31.381 (6)C15—C161.357 (7)
C2—H20.9300C15—H150.9300
C3—C41.355 (7)C16—H160.9300
O1—Cu1—O291.10 (12)C3—C4—H4120.4
O1—Cu1—Cl195.13 (8)C5—C4—H4120.4
O2—Cu1—Cl1100.39 (9)C6—C5—C4120.3 (4)
O1—Cu1—Cl2i169.61 (9)C6—C5—H5119.9
O2—Cu1—Cl2i93.77 (9)C4—C5—H5119.9
Cl1—Cu1—Cl2i93.00 (4)N1—C6—C5118.5 (4)
O1—Cu1—Cl284.65 (8)N1—C6—S1119.4 (3)
O2—Cu1—Cl295.75 (9)C5—C6—S1121.9 (3)
Cl1—Cu1—Cl2163.86 (5)O11—N11—C16121.7 (4)
Cl2i—Cu1—Cl285.74 (4)O11—N11—C12117.8 (4)
Cu1i—Cl2—Cu194.26 (4)C16—N11—C12120.5 (4)
C12—S1—C699.6 (2)N11—C12—C13119.7 (4)
N1—O1—Cu1121.8 (2)N11—C12—S1110.7 (3)
Cu1—O2—H2A111 (4)C13—C12—S1129.6 (3)
Cu1—O2—H2B117 (3)C12—C13—C14119.9 (4)
H2A—O2—H2B100 (5)C12—C13—H13120.1
O1—N1—C2117.9 (4)C14—C13—H13120.1
O1—N1—C6120.1 (3)C13—C14—C15119.3 (5)
C2—N1—C6122.0 (4)C13—C14—H14120.3
N1—C2—C3119.6 (4)C15—C14—H14120.3
N1—C2—H2120.2C16—C15—C14120.1 (5)
C3—C2—H2120.2C16—C15—H15120.0
C4—C3—C2120.4 (4)C14—C15—H15120.0
C4—C3—H3119.8N11—C16—C15120.5 (4)
C2—C3—H3119.8N11—C16—H16119.7
C3—C4—C5119.2 (4)C15—C16—H16119.7

Symmetry codes: (i) −x+1, −y+1, −z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O2—H2A···O1ii0.81 (2)2.13 (2)2.919 (4)167 (5)
O2—H2B···O11i0.82 (2)1.97 (2)2.789 (5)177 (5)

Symmetry codes: (ii) −x, −y+1, −z; (i) −x+1, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2439).

References

  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  • Brandenburg, K. (2008). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (1999). XSCANS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Sun, H.-L., Wang, Z.-M., Gao, S. & Batten, S. R. (2008). CrystEngComm, 10, 1796–1802.
  • Wang, J., Zheng, S.-L., Hu, S., Zhang, Y.-H. & Tong, M.-L. (2007). Inorg. Chem.46, 795–800. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography