PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 April 1; 65(Pt 4): o889–o890.
Published online 2009 March 28. doi:  10.1107/S1600536809010848
PMCID: PMC2968804

(E)-3-(4-Decyl­oxyphen­yl)-1-(2-hydroxy­phen­yl)prop-2-en-1-one

Abstract

In the title compound, C25H32O3, the enone group is in an scis configuration. The dihedral angle between the benzene rings is 8.84 (7)°. An intra­molecular O—H(...)O inter­action between the keto and hydr­oxy groups forms an S(6) ring motif. Inter­molecular C—H(...)O inter­actions link the mol­ecules into supra­molecular chains along the c axis which are subsequently stacked down the b axis; the crystal structure is further consolidated by C—H(...)π inter­actions.

Related literature

For general background, see: Bhat et al. (2005 [triangle]); Xue et al. (2004 [triangle]); Satyanarayana et al. (2004 [triangle]); Won et al. (2005 [triangle]); Zhao et al. (2005 [triangle]). For related structures, see: Ng, Razak et al. (2006 [triangle]); Ng, Patil et al. (2006 [triangle]); Razak et al. (2009 [triangle]); Ngaini et al. (2009 [triangle]). For details of hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer, 1986 [triangle].

An external file that holds a picture, illustration, etc.
Object name is e-65-0o889-scheme1.jpg

Experimental

Crystal data

  • C25H32O3
  • M r = 380.51
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o889-efi1.jpg
  • a = 21.2700 (4) Å
  • b = 7.6779 (2) Å
  • c = 13.2330 (3) Å
  • β = 101.720 (1)°
  • V = 2116.01 (8) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 100 K
  • 0.44 × 0.28 × 0.04 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.967, T max = 0.997
  • 25687 measured reflections
  • 6221 independent reflections
  • 4014 reflections with I > 2σ(I)
  • R int = 0.056

Refinement

  • R[F 2 > 2σ(F 2)] = 0.058
  • wR(F 2) = 0.165
  • S = 1.04
  • 6221 reflections
  • 258 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.37 e Å−3
  • Δρmin = −0.26 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT (Bruker, 2005 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809010848/tk2402sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809010848/tk2402Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

HKF and IAR thank the Malaysian Government and Universiti Sains Malaysia for the award of the Science Fund grant No. 305/PFIZIK/613312 and for the Research University Golden Goose grant No. 1001/PFIZIK/811012. ZN and HH thank Universiti Malaysia Sarawak for the Geran Penyelidikan Dana Khas Inovasi, grant No. DI/01/2007(01). NIAR thanks the Malaysian Government and Universiti Malaysia Sarawak for providing a scholarship for postgraduate studies.

supplementary crystallographic information

Comment

Chalcone is one of the important intermediates in the biosynthesis of flavonoid. Chalcones derivatives are reported to exhibit biological properties such as an anti-malarial (Xue et al., 2004), anti-cancer (Bhat et al., 2005), anti-inflammatory (Won et al., 2005), anti-platelet (Zhao et al., 2005), and as well as anti-hyperglycemic (Satyanarayana et al., 2004) activities.

Chalcone derivatives possessing alkyl chains of varying length have been synthesized in our laboratory. They were tested against E. coli ATCC 8739 for their anti-bacterial activities and showed anti-microbial activity. In this paper, we report the structure of one of the chalcone derivatives mentioned above.

In (I), Fig. 1, the enone group is in an s-cis configuration as indicated by the torsion angle O2—C7—C8—C9 of 1.2 (2)°. The least-square plane through the enone moiety makes dihedral angle of 3.64 (10)° with C1—C6 benzene ring whereas the dihedral angle formed with the C10—C15 benzene ring is 7.72 (10)°. The dihedral angle between these benzene rings is 8.84 (7)°. The alkoxyl group is co-planar with the attached benzene ring as shown by the torsion angle C16—O3—C13—C14 of -1.6 (2)°.

The strain induced by a short H5A···H8A contact (2.11 Å) leads to the slight opening of the C5—C6—C7 angle to 123.03 (13)°. Likewise, the widening of C8—C9—C10 (128.65 (14)°) and C9—C10—C11 (123.18 (13)°) angles are the result of a close H8A···H11A (2.32 Å) interatomic contact. These features were also observed in related structures reported previously (Ng, Razak et al., 2006; Ng, Patil et al., 2006; Razak et al., 2009; Ngaini et al., 2009). An intramolecular O1-H1O1···O2 interaction between the keto group and the hydroxy generates an S(6) ring motif (Bernstein et al., 1995).

In the crystal structure, C15—H15A···O3 (x, -y + 1/2, z + 1/2) intermolecular interactions link the molecules into extended chains along the c axis (Table 1 and Fig. 2). These chains are subsequently stacked down the b axis. The crystal packing is further stabilized by the presence of C—H···π interactions formed between atoms C16, C20 and C22 in the alkoxyl tail and the benzene rings (Table 1).

Experimental

A mixture of 2-hydroxyacetophenone (2.72 ml, 20 mmol), 4-decyloxybenzaldehyde (5.25 ml, 20 mmol) and KOH (4.04 g, 72 mmol) in methanol (60 ml) was heated at reflux for 10 h. The reaction mixture was cooled to room temperature and acidified with cold diluted HCl (2 N). The resulting precipitate was filtered, washed and dried. After redissolving in hexane and followed by few days of slow evaporation, crystals were collected.

Refinement

All the C-bound H atoms were positioned geometrically and refined using a riding model with C—H = 0.93–0.97 Å. The Uiso values were constrained to be 1.5Ueq(C) for methyl-H and 1.2Ueq(C) for other H atoms. The rotating model group was applied for the methyl group. In the case of O1, the hydrogen atom was located from a difference Fourier map and refined without constraints.

Figures

Fig. 1.
The molecular structure of (I), showing 50% probability displacement ellipsoids and the atom numbering scheme.
Fig. 2.
The crystal packing viewed down the b axis.

Crystal data

C25H32O3F(000) = 824
Mr = 380.51Dx = 1.194 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3600 reflections
a = 21.2700 (4) Åθ = 2.8–30.1°
b = 7.6779 (2) ŵ = 0.08 mm1
c = 13.2330 (3) ÅT = 100 K
β = 101.720 (1)°Plate, yellow
V = 2116.01 (8) Å30.44 × 0.28 × 0.04 mm
Z = 4

Data collection

Bruker APEXII CCD area-detector diffractometer6221 independent reflections
Radiation source: sealed tube4014 reflections with I > 2σ(I)
graphiteRint = 0.056
π and ω scansθmax = 30.1°, θmin = 1.0°
Absorption correction: multi-scan (SADABS; Bruker, 2005)h = −30→30
Tmin = 0.967, Tmax = 0.997k = −10→10
25687 measured reflectionsl = −18→18

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.165H atoms treated by a mixture of independent and constrained refinement
S = 1.04w = 1/[σ2(Fo2) + (0.085P)2] where P = (Fo2 + 2Fc2)/3
6221 reflections(Δ/σ)max < 0.001
258 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = −0.26 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.77177 (6)−0.18603 (17)1.07201 (8)0.0262 (3)
O20.67717 (5)−0.08052 (16)0.93853 (8)0.0229 (3)
O30.46966 (5)0.31479 (15)0.38134 (8)0.0184 (3)
C10.80643 (7)−0.1716 (2)0.99763 (11)0.0190 (3)
C20.87159 (7)−0.2144 (2)1.02373 (12)0.0221 (4)
H2A0.8895−0.25021.09050.026*
C30.90932 (8)−0.2037 (2)0.95104 (13)0.0238 (4)
H3A0.9527−0.23170.96910.029*
C40.88302 (7)−0.1510 (2)0.85025 (12)0.0243 (4)
H4A0.9087−0.14470.80120.029*
C50.81885 (7)−0.1087 (2)0.82397 (12)0.0202 (4)
H5A0.8015−0.07480.75660.024*
C60.77893 (7)−0.1153 (2)0.89626 (11)0.0164 (3)
C70.71034 (7)−0.0670 (2)0.87122 (11)0.0168 (3)
C80.68075 (7)−0.0001 (2)0.76851 (11)0.0170 (3)
H8A0.70500.00830.71760.020*
C90.61889 (7)0.0488 (2)0.74806 (11)0.0162 (3)
H9A0.59730.03650.80210.019*
C100.58106 (7)0.1188 (2)0.65252 (11)0.0148 (3)
C110.60383 (7)0.1283 (2)0.56004 (11)0.0173 (3)
H11A0.64510.08980.55830.021*
C120.56528 (7)0.1943 (2)0.47184 (11)0.0181 (3)
H12A0.58060.19930.41090.022*
C130.50347 (7)0.2538 (2)0.47327 (11)0.0155 (3)
C140.48019 (7)0.2480 (2)0.56425 (11)0.0169 (3)
H14A0.43930.28910.56610.020*
C150.51927 (7)0.1794 (2)0.65231 (11)0.0178 (3)
H15A0.50370.17380.71300.021*
C160.40477 (7)0.3738 (2)0.37618 (11)0.0166 (3)
H16A0.40400.46900.42410.020*
H16B0.37840.27980.39350.020*
C170.37994 (7)0.4340 (2)0.26649 (11)0.0167 (3)
H17A0.38360.33890.21980.020*
H17B0.40680.52860.25120.020*
C180.31030 (7)0.4956 (2)0.24639 (11)0.0174 (3)
H18A0.30630.59220.29190.021*
H18B0.28300.40180.26130.021*
C190.28817 (7)0.5531 (2)0.13439 (11)0.0171 (3)
H19A0.31530.64840.12120.021*
H19B0.29460.45710.08990.021*
C200.21838 (7)0.6114 (2)0.10436 (11)0.0179 (3)
H20A0.21130.70860.14760.022*
H20B0.19060.51670.11610.022*
C210.20115 (7)0.6662 (2)−0.00900 (11)0.0197 (3)
H21A0.22930.7608−0.01970.024*
H21B0.20950.5690−0.05120.024*
C220.13201 (7)0.7246 (2)−0.04652 (11)0.0198 (3)
H22A0.12310.8218−0.00480.024*
H22B0.10340.6300−0.03750.024*
C230.11847 (7)0.7792 (2)−0.15963 (12)0.0210 (4)
H23A0.14670.8751−0.16770.025*
H23B0.12890.6826−0.20060.025*
C240.04954 (7)0.8345 (2)−0.20226 (12)0.0223 (4)
H24A0.04000.9375−0.16570.027*
H24B0.02080.7424−0.18990.027*
C250.03726 (8)0.8736 (3)−0.31744 (13)0.0296 (4)
H25A−0.00620.9124−0.34020.044*
H25B0.04410.7700−0.35440.044*
H25C0.06620.9630−0.33040.044*
H1O10.7313 (10)−0.153 (3)1.0406 (17)0.053 (7)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0252 (6)0.0380 (8)0.0154 (5)0.0058 (6)0.0043 (4)0.0038 (5)
O20.0205 (6)0.0322 (7)0.0166 (5)0.0022 (5)0.0052 (4)0.0040 (5)
O30.0157 (5)0.0255 (7)0.0137 (5)0.0054 (5)0.0025 (4)0.0040 (4)
C10.0206 (8)0.0206 (9)0.0152 (7)0.0009 (7)0.0024 (6)−0.0017 (6)
C20.0218 (8)0.0255 (10)0.0162 (7)0.0055 (7)−0.0025 (6)0.0014 (6)
C30.0182 (8)0.0260 (10)0.0258 (8)0.0050 (7)0.0008 (6)−0.0011 (7)
C40.0202 (8)0.0302 (10)0.0234 (8)0.0027 (8)0.0066 (6)0.0020 (7)
C50.0207 (8)0.0217 (9)0.0178 (7)0.0012 (7)0.0027 (6)0.0028 (6)
C60.0160 (7)0.0162 (8)0.0161 (7)0.0003 (6)0.0009 (5)0.0002 (6)
C70.0180 (7)0.0154 (8)0.0164 (7)−0.0009 (6)0.0020 (5)−0.0005 (6)
C80.0191 (7)0.0172 (8)0.0147 (7)−0.0002 (7)0.0033 (5)0.0011 (6)
C90.0194 (7)0.0155 (8)0.0139 (7)−0.0026 (6)0.0039 (5)−0.0023 (6)
C100.0151 (7)0.0147 (8)0.0140 (6)−0.0009 (6)0.0018 (5)−0.0003 (6)
C110.0155 (7)0.0187 (9)0.0181 (7)0.0020 (6)0.0041 (5)−0.0015 (6)
C120.0187 (7)0.0221 (9)0.0146 (7)0.0018 (7)0.0062 (5)0.0011 (6)
C130.0169 (7)0.0152 (8)0.0136 (7)0.0003 (6)0.0016 (5)−0.0003 (6)
C140.0135 (7)0.0204 (9)0.0170 (7)0.0015 (6)0.0034 (5)−0.0016 (6)
C150.0167 (7)0.0230 (9)0.0144 (7)−0.0017 (7)0.0048 (5)−0.0004 (6)
C160.0131 (7)0.0211 (9)0.0159 (7)0.0018 (6)0.0036 (5)0.0008 (6)
C170.0165 (7)0.0180 (8)0.0154 (7)0.0013 (6)0.0024 (5)0.0010 (6)
C180.0162 (7)0.0207 (9)0.0153 (7)0.0017 (7)0.0027 (5)0.0016 (6)
C190.0161 (7)0.0197 (9)0.0154 (7)0.0004 (6)0.0030 (5)0.0018 (6)
C200.0168 (7)0.0190 (9)0.0178 (7)0.0006 (7)0.0028 (5)0.0007 (6)
C210.0179 (7)0.0232 (9)0.0175 (7)0.0037 (7)0.0023 (6)0.0015 (6)
C220.0192 (7)0.0213 (9)0.0186 (7)0.0018 (7)0.0029 (6)0.0009 (6)
C230.0194 (8)0.0236 (9)0.0191 (7)0.0021 (7)0.0016 (6)0.0005 (6)
C240.0180 (7)0.0244 (10)0.0228 (8)0.0023 (7)0.0005 (6)0.0014 (7)
C250.0279 (9)0.0333 (11)0.0238 (8)0.0024 (8)−0.0038 (7)0.0034 (7)

Geometric parameters (Å, °)

O1—C11.3488 (18)C16—C171.5126 (19)
O1—H1O10.91 (2)C16—H16A0.9700
O2—C71.2479 (17)C16—H16B0.9700
O3—C131.3643 (17)C17—C181.526 (2)
O3—C161.4411 (17)C17—H17A0.9700
C1—C21.398 (2)C17—H17B0.9700
C1—C61.418 (2)C18—C191.5263 (19)
C2—C31.375 (2)C18—H18A0.9700
C2—H2A0.9300C18—H18B0.9700
C3—C41.397 (2)C19—C201.524 (2)
C3—H3A0.9300C19—H19A0.9700
C4—C51.377 (2)C19—H19B0.9700
C4—H4A0.9300C20—C211.529 (2)
C5—C61.403 (2)C20—H20A0.9700
C5—H5A0.9300C20—H20B0.9700
C6—C71.476 (2)C21—C221.521 (2)
C7—C81.469 (2)C21—H21A0.9700
C8—C91.342 (2)C21—H21B0.9700
C8—H8A0.9300C22—C231.524 (2)
C9—C101.4563 (19)C22—H22A0.9700
C9—H9A0.9300C22—H22B0.9700
C10—C151.394 (2)C23—C241.520 (2)
C10—C111.406 (2)C23—H23A0.9700
C11—C121.379 (2)C23—H23B0.9700
C11—H11A0.9300C24—C251.523 (2)
C12—C131.395 (2)C24—H24A0.9700
C12—H12A0.9300C24—H24B0.9700
C13—C141.393 (2)C25—H25A0.9600
C14—C151.390 (2)C25—H25B0.9600
C14—H14A0.9300C25—H25C0.9600
C15—H15A0.9300
C1—O1—H1O1104.5 (14)C16—C17—H17A108.9
C13—O3—C16118.47 (11)C18—C17—H17A108.9
O1—C1—C2117.51 (14)C16—C17—H17B108.9
O1—C1—C6122.27 (14)C18—C17—H17B108.9
C2—C1—C6120.21 (14)H17A—C17—H17B107.7
C3—C2—C1120.24 (14)C17—C18—C19110.85 (12)
C3—C2—H2A119.9C17—C18—H18A109.5
C1—C2—H2A119.9C19—C18—H18A109.5
C2—C3—C4120.52 (14)C17—C18—H18B109.5
C2—C3—H3A119.7C19—C18—H18B109.5
C4—C3—H3A119.7H18A—C18—H18B108.1
C5—C4—C3119.56 (15)C20—C19—C18115.48 (12)
C5—C4—H4A120.2C20—C19—H19A108.4
C3—C4—H4A120.2C18—C19—H19A108.4
C4—C5—C6121.68 (14)C20—C19—H19B108.4
C4—C5—H5A119.2C18—C19—H19B108.4
C6—C5—H5A119.2H19A—C19—H19B107.5
C5—C6—C1117.76 (13)C19—C20—C21111.31 (12)
C5—C6—C7123.03 (13)C19—C20—H20A109.4
C1—C6—C7119.21 (13)C21—C20—H20A109.4
O2—C7—C8119.42 (13)C19—C20—H20B109.4
O2—C7—C6119.67 (13)C21—C20—H20B109.4
C8—C7—C6120.90 (13)H20A—C20—H20B108.0
C9—C8—C7120.17 (14)C22—C21—C20115.12 (12)
C9—C8—H8A119.9C22—C21—H21A108.5
C7—C8—H8A119.9C20—C21—H21A108.5
C8—C9—C10128.65 (14)C22—C21—H21B108.5
C8—C9—H9A115.7C20—C21—H21B108.5
C10—C9—H9A115.7H21A—C21—H21B107.5
C15—C10—C11118.18 (13)C21—C22—C23112.27 (12)
C15—C10—C9118.64 (13)C21—C22—H22A109.2
C11—C10—C9123.18 (13)C23—C22—H22A109.2
C12—C11—C10120.31 (14)C21—C22—H22B109.2
C12—C11—H11A119.8C23—C22—H22B109.2
C10—C11—H11A119.8H22A—C22—H22B107.9
C11—C12—C13120.56 (13)C24—C23—C22114.63 (13)
C11—C12—H12A119.7C24—C23—H23A108.6
C13—C12—H12A119.7C22—C23—H23A108.6
O3—C13—C14124.49 (13)C24—C23—H23B108.6
O3—C13—C12115.33 (12)C22—C23—H23B108.6
C14—C13—C12120.18 (13)H23A—C23—H23B107.6
C15—C14—C13118.67 (14)C23—C24—C25112.51 (14)
C15—C14—H14A120.7C23—C24—H24A109.1
C13—C14—H14A120.7C25—C24—H24A109.1
C14—C15—C10122.08 (14)C23—C24—H24B109.1
C14—C15—H15A119.0C25—C24—H24B109.1
C10—C15—H15A119.0H24A—C24—H24B107.8
O3—C16—C17106.62 (11)C24—C25—H25A109.5
O3—C16—H16A110.4C24—C25—H25B109.5
C17—C16—H16A110.4H25A—C25—H25B109.5
O3—C16—H16B110.4C24—C25—H25C109.5
C17—C16—H16B110.4H25A—C25—H25C109.5
H16A—C16—H16B108.6H25B—C25—H25C109.5
C16—C17—C18113.54 (12)
O1—C1—C2—C3179.46 (16)C9—C10—C11—C12179.31 (15)
C6—C1—C2—C3−0.6 (3)C10—C11—C12—C130.5 (2)
C1—C2—C3—C4−0.4 (3)C16—O3—C13—C14−1.6 (2)
C2—C3—C4—C50.4 (3)C16—O3—C13—C12178.28 (13)
C3—C4—C5—C60.6 (3)C11—C12—C13—O3−179.46 (14)
C4—C5—C6—C1−1.5 (2)C11—C12—C13—C140.4 (2)
C4—C5—C6—C7178.57 (16)O3—C13—C14—C15178.78 (14)
O1—C1—C6—C5−178.55 (15)C12—C13—C14—C15−1.1 (2)
C2—C1—C6—C51.5 (2)C13—C14—C15—C100.9 (2)
O1—C1—C6—C71.4 (2)C11—C10—C15—C140.0 (2)
C2—C1—C6—C7−178.58 (15)C9—C10—C15—C14−179.99 (14)
C5—C6—C7—O2178.04 (16)C13—O3—C16—C17179.70 (13)
C1—C6—C7—O2−1.9 (2)O3—C16—C17—C18178.01 (13)
C5—C6—C7—C8−3.0 (2)C16—C17—C18—C19−179.58 (13)
C1—C6—C7—C8177.06 (15)C17—C18—C19—C20177.93 (14)
O2—C7—C8—C91.2 (2)C18—C19—C20—C21179.96 (14)
C6—C7—C8—C9−177.73 (15)C19—C20—C21—C22179.28 (14)
C7—C8—C9—C10179.58 (15)C20—C21—C22—C23179.36 (14)
C8—C9—C10—C15−172.82 (16)C21—C22—C23—C24178.50 (14)
C8—C9—C10—C117.2 (3)C22—C23—C24—C25−175.39 (15)
C15—C10—C11—C12−0.7 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1O1···O20.91 (2)1.68 (2)2.526 (2)152 (2)
C15—H15A···O3i0.932.483.406 (2)174
C20—H20B···Cg1ii0.972.853.702 (2)147
C22—H22A···Cg1iii0.972.843.712 (2)149
C16—H16A···Cg2iii0.972.873.596 (2)132

Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) −x+1, −y, −z+1; (iii) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2402).

References

  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bhat, B. A., Dhar, K. L., Puri, S. C., Saxena, A. K., Shanmugavel, M. & Qazi, G. N. (2005). Bioorg. Med. Chem. Lett.15, 3177–3180. [PubMed]
  • Bruker (2005). APEX2, SAINT, and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  • Ng, S.-L., Patil, P. S., Razak, I. A., Fun, H.-K. & Dharmaprakash, S. M. (2006). Acta Cryst. E62, o1228–o1230.
  • Ng, S.-L., Razak, I. A., Fun, H.-K., Shettigar, V., Patil, P. S. & Dharmaprakash, S. M. (2006). Acta Cryst. E62, o2175–o2177.
  • Ngaini, Z., Fadzillah, S. M. H., Rahman, N. I. A., Hussain, H., Razak, I. A. & Fun, H.-K. (2009). Acta Cryst. E65, o879–o880. [PMC free article] [PubMed]
  • Razak, I. A., Fun, H.-K., Ngaini, Z., Fadzillah, S. M. H. & Hussain, H. (2009). Acta Cryst. E65, o881–o882. [PMC free article] [PubMed]
  • Satyanarayana, M., Tiwari, P., Tripathi, B. K., Srivastava, A. K. & Pratap, R. (2004). Bioorg. Med. Chem. Lett.12, 883–889. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Won, S. J., Liu, C. T., Tsao, L. T., Weng, J. R., Ko, H. H., Wang, J. P. & Lin, C. N. (2005). Eur. J. Med. Chem.40, 103–112. [PubMed]
  • Xue, C. X., Cui, S. Y., Liu, M. C., Hu, Z. D. & Fan, B. T. (2004). Eur. J. Med. Chem.39, 745–753. [PubMed]
  • Zhao, L. M., Jin, H. S., Sun, L. P., Piao, H. R. & Quan, Z. S. (2005). Chem. Lett.15, 5027–5029. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography