PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 April 1; 65(Pt 4): o788.
Published online 2009 March 19. doi:  10.1107/S1600536809009222
PMCID: PMC2968803

3,3,5,5-Tetra­methyl-3,5-disila-4,10-dioxatetra­cyclo­[5.5.1.02,6.08,12]tridecane-9,11-dione

Abstract

The title compound, C13H20O4Si2, is a siloxane-functionalized norbornane anhydride. Both five-membered heterocyclic rings of the mol­ecule have a planar structure, whereas the two five-membered aliphatic rings assume envelope conformations. Weak inter­molecular C—H(...)O hydrogen bonding is present in the crystal structure.

Related literature

For the synthesis and curing properties with the epoxy resin of silylnorbornane anhydrides, see: Eddy et al. (1990 [triangle]); Ryang (1983 [triangle]). For the preparation of the title complex by reacting 1,1,3,3-tetramethyldisiloxane and 5-norbornene-2,3-dicarb­ox­ylic acid anhydride in the presence of a platinum catalyst, see: Buese (1986 [triangle]); Eddy & Hallgren (1985 [triangle]); Ryang (1983 [triangle]); Swint & Buese (1991 [triangle]). In this reaction, the unsaturated anhydride was hydrosilylated with silicon hydride, see: Eddy & Hallgren (1987 [triangle]); Lewis & Uriarte (1990 [triangle]); Lewis (1990 [triangle]); Onopchenko & Sabourin (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o788-scheme1.jpg

Experimental

Crystal data

  • C13H20O4Si2
  • M r = 296.47
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o788-efi1.jpg
  • a = 8.0475 (16) Å
  • b = 12.047 (2) Å
  • c = 15.361 (3) Å
  • β = 95.84 (3)°
  • V = 1481.5 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.25 mm−1
  • T = 173 K
  • 0.77 × 0.55 × 0.40 mm

Data collection

  • Rigaku R-AXIS RAPID IP area-detector diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.833, T max = 0.908
  • 6539 measured reflections
  • 3398 independent reflections
  • 2921 reflections with I > 2σ(I)
  • R int = 0.016

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044
  • wR(F 2) = 0.102
  • S = 1.15
  • 3398 reflections
  • 172 parameters
  • H-atom parameters constrained
  • Δρmax = 0.27 e Å−3
  • Δρmin = −0.37 e Å−3

Data collection: RAPID-AUTO (Rigaku, 2001 [triangle]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: XP in SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809009222/xu2490sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809009222/xu2490Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The work was supported financially by the 863 Project of China.

supplementary crystallographic information

Comment

Recently, we are interested in the synthesis and curing properties with epoxy resin of silylnorbornane anhydrides. The cured products show improved thermal and physical properties as compared to conventional curing agents (Eddy et al., 1990; Ryang, 1983). The title complex was provided by reacting 1,1,3,3-tetramethyldisiloxane and 5-norbornene-2,3-dicarboxylic acid anhydride in the presence of a platinum catalyst (Buese, 1986; Eddy & Hallgren, 1985; Ryang, 1983; Swint & Buese,1991). In this reaction, the unsaturated anhydride was hydrosilylated with silicon hydride (Eddy & Hallgren, 1987; Lewis & Uriarte, 1990; Lewis, 1990; Onopchenko & Sabourin, 1987).

In the title compound, the two Si atoms in tetramethyldisiloxane are linked into a ring by carbon-silicon linkages by two C atoms (Fig. 1). Both five-membered heterocyclic rings of the molecule have planar structure, whereas two five-membered aliphatic rings assume the envelope conformation. The weak intermolecular C—H···O hydrogen bonding presents in the crystal structure (Table 1).

Experimental

Synthetic reaction was performed in refluxing toluene under hermetic condition. Toluene was dried over appropriate drying agent and distilled prior to use. There was added 10 drops platinum catalyst to a mixture while it was being stirred of 36.08 g (0.22 mole) of 5-norbornene-2,3- dicarboxylic acid anhydride, 13.4 g (0.1 mole) of 1,1,3,3-tetramethyldisiloxane and 150 ml of toluene. The resulting mixture was heated to 70°C for 8 h and then 100°C overnight. After cooling, filtration, removal of the solvent under vacuum and addition of dry diethyl ether resulted in the precipitation of white powder. Colourless crystals of the title compound suitable for X-ray structure analysis were obtained by crystallization in appropriate solvent.

Refinement

All H atoms were fixed geometrically and treated as riding atoms with distances C—H = 0.98 Å (CH3), 0.99 Å (CH2) or 1.000 Å (CH) with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C).

Figures

Fig. 1.
The molecular structure of the title compound at 50% probability level.

Crystal data

C13H20O4Si2F(000) = 632
Mr = 296.47Dx = 1.329 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 687 reflections
a = 8.0475 (16) Åθ = 2.2–27.5°
b = 12.047 (2) ŵ = 0.25 mm1
c = 15.361 (3) ÅT = 173 K
β = 95.84 (3)°Block, colourless
V = 1481.5 (5) Å30.77 × 0.55 × 0.40 mm
Z = 4

Data collection

Rigaku R-AXIS RAPID IP area-detector diffractometer3398 independent reflections
Radiation source: rotating anode2921 reflections with I > 2σ(I)
graphiteRint = 0.016
ω scans at fixed χ = 45°θmax = 27.5°, θmin = 2.2°
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)h = −10→10
Tmin = 0.833, Tmax = 0.908k = −15→15
6539 measured reflectionsl = −19→19

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H-atom parameters constrained
S = 1.15w = 1/[σ2(Fo2) + (0.0539P)2] where P = (Fo2 + 2Fc2)/3
3398 reflections(Δ/σ)max < 0.001
172 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = −0.37 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Si10.16741 (6)0.26208 (4)0.90062 (3)0.02159 (13)
Si2−0.13909 (6)0.22004 (4)0.97218 (3)0.01986 (13)
O10.1060 (2)0.08686 (13)1.26700 (10)0.0447 (4)
O20.34875 (17)0.10991 (11)1.21113 (8)0.0295 (3)
O30.57506 (18)0.17797 (12)1.15730 (9)0.0371 (4)
O4−0.03918 (16)0.25012 (11)0.88621 (8)0.0268 (3)
C10.1966 (3)0.14869 (17)1.23476 (11)0.0295 (4)
C20.4400 (2)0.19586 (15)1.17782 (11)0.0264 (4)
C30.3389 (2)0.30054 (14)1.17335 (11)0.0239 (4)
H3A0.39930.36151.20760.029*
C40.2776 (2)0.33916 (14)1.07905 (11)0.0216 (4)
H4A0.35900.38661.05090.026*
C50.1164 (2)0.39877 (14)1.09749 (11)0.0239 (4)
H5A0.05070.42531.04350.029*
H5B0.13680.46051.13970.029*
C60.0379 (2)0.29693 (14)1.13743 (11)0.0222 (4)
H6A−0.07470.31051.15750.027*
C70.1770 (2)0.26977 (15)1.21202 (11)0.0254 (4)
H7A0.16300.31511.26530.031*
C80.2102 (2)0.23867 (14)1.02310 (10)0.0196 (3)
H8A0.28850.17461.03410.024*
C90.0397 (2)0.21144 (13)1.06256 (10)0.0191 (3)
H9A0.04510.13481.08760.023*
C100.2621 (3)0.15072 (18)0.83835 (13)0.0359 (5)
H10A0.23810.16470.77550.054*
H10B0.21490.07880.85280.054*
H10C0.38320.14980.85390.054*
C110.2318 (2)0.40101 (16)0.86415 (12)0.0299 (4)
H11A0.20570.40740.80060.045*
H11B0.35230.41050.87930.045*
H11C0.17160.45850.89330.045*
C12−0.2961 (2)0.32903 (15)0.98616 (12)0.0278 (4)
H12A−0.38280.32710.93650.042*
H12B−0.24180.40190.98880.042*
H12C−0.34700.31581.04050.042*
C13−0.2450 (3)0.08331 (15)0.95812 (14)0.0348 (5)
H13A−0.33710.08840.91140.052*
H13B−0.28900.06211.01290.052*
H13C−0.16470.02730.94270.052*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Si10.0194 (2)0.0322 (3)0.0130 (2)0.0056 (2)0.00060 (17)−0.00032 (18)
Si20.0180 (2)0.0239 (2)0.0170 (2)0.00166 (18)−0.00122 (17)−0.00031 (17)
O10.0419 (9)0.0574 (10)0.0347 (8)−0.0030 (7)0.0025 (7)0.0191 (7)
O20.0328 (8)0.0327 (7)0.0219 (6)0.0063 (6)−0.0031 (5)0.0023 (5)
O30.0284 (8)0.0543 (9)0.0280 (7)0.0140 (7)0.0002 (6)0.0065 (6)
O40.0209 (7)0.0447 (8)0.0142 (6)0.0031 (6)−0.0012 (5)0.0008 (5)
C10.0314 (10)0.0421 (11)0.0141 (8)0.0028 (8)−0.0025 (7)0.0031 (7)
C20.0281 (10)0.0355 (10)0.0139 (8)0.0037 (8)−0.0066 (7)0.0004 (7)
C30.0238 (9)0.0289 (9)0.0175 (8)0.0026 (7)−0.0046 (7)−0.0023 (7)
C40.0210 (9)0.0251 (8)0.0177 (8)0.0024 (7)−0.0022 (7)0.0000 (6)
C50.0257 (9)0.0243 (9)0.0206 (8)0.0051 (7)−0.0033 (7)−0.0031 (6)
C60.0212 (9)0.0300 (9)0.0150 (8)0.0063 (7)0.0004 (6)−0.0022 (6)
C70.0278 (10)0.0351 (10)0.0128 (8)0.0045 (8)−0.0009 (7)−0.0035 (7)
C80.0180 (8)0.0258 (8)0.0146 (7)0.0066 (7)−0.0004 (6)−0.0011 (6)
C90.0212 (8)0.0220 (8)0.0139 (8)0.0042 (6)0.0005 (6)−0.0009 (6)
C100.0392 (12)0.0486 (12)0.0206 (9)0.0149 (10)0.0056 (8)−0.0044 (8)
C110.0270 (10)0.0403 (11)0.0218 (9)0.0021 (8)0.0003 (7)0.0042 (7)
C120.0215 (9)0.0322 (9)0.0294 (10)0.0058 (7)0.0018 (7)0.0022 (7)
C130.0357 (11)0.0292 (10)0.0373 (11)−0.0018 (8)−0.0078 (9)−0.0021 (8)

Geometric parameters (Å, °)

Si1—O41.6609 (14)C5—H5A0.9900
Si1—C111.856 (2)C5—H5B0.9900
Si1—C101.856 (2)C6—C91.545 (2)
Si1—C81.8988 (17)C6—C71.553 (2)
Si2—O41.6547 (14)C6—H6A1.0000
Si2—C121.8501 (18)C7—H7A1.0000
Si2—C131.8570 (19)C8—C91.589 (2)
Si2—C91.8977 (18)C8—H8A1.0000
O1—C11.185 (2)C9—H9A1.0000
O2—C11.393 (2)C10—H10A0.9800
O2—C21.396 (2)C10—H10B0.9800
O3—C21.182 (2)C10—H10C0.9800
C1—C71.505 (3)C11—H11A0.9800
C2—C31.499 (3)C11—H11B0.9800
C3—C71.531 (3)C11—H11C0.9800
C3—C41.553 (2)C12—H12A0.9800
C3—H3A1.0000C12—H12B0.9800
C4—C51.535 (2)C12—H12C0.9800
C4—C81.551 (2)C13—H13A0.9800
C4—H4A1.0000C13—H13B0.9800
C5—C61.536 (2)C13—H13C0.9800
O4—Si1—C11110.16 (8)C7—C6—H6A114.5
O4—Si1—C10109.06 (9)C1—C7—C3104.57 (15)
C11—Si1—C10110.76 (10)C1—C7—C6115.23 (15)
O4—Si1—C8101.37 (8)C3—C7—C6103.91 (14)
C11—Si1—C8113.90 (8)C1—C7—H7A110.9
C10—Si1—C8111.15 (8)C3—C7—H7A110.9
O4—Si2—C12109.29 (8)C6—C7—H7A110.9
O4—Si2—C13110.85 (9)C4—C8—C9102.53 (13)
C12—Si2—C13109.41 (10)C4—C8—Si1116.81 (12)
O4—Si2—C9101.65 (7)C9—C8—Si1109.40 (11)
C12—Si2—C9115.46 (8)C4—C8—H8A109.3
C13—Si2—C9109.96 (8)C9—C8—H8A109.3
C1—O2—C2110.85 (15)Si1—C8—H8A109.3
Si2—O4—Si1118.28 (8)C6—C9—C8102.71 (13)
O1—C1—O2119.50 (18)C6—C9—Si2116.39 (12)
O1—C1—C7130.70 (19)C8—C9—Si2109.22 (11)
O2—C1—C7109.81 (16)C6—C9—H9A109.4
O3—C2—O2119.65 (17)C8—C9—H9A109.4
O3—C2—C3130.63 (19)Si2—C9—H9A109.4
O2—C2—C3109.71 (16)Si1—C10—H10A109.5
C2—C3—C7104.96 (15)Si1—C10—H10B109.5
C2—C3—C4114.45 (14)H10A—C10—H10B109.5
C7—C3—C4103.46 (14)Si1—C10—H10C109.5
C2—C3—H3A111.2H10A—C10—H10C109.5
C7—C3—H3A111.2H10B—C10—H10C109.5
C4—C3—H3A111.2Si1—C11—H11A109.5
C5—C4—C8102.28 (14)Si1—C11—H11B109.5
C5—C4—C399.31 (14)H11A—C11—H11B109.5
C8—C4—C3110.06 (14)Si1—C11—H11C109.5
C5—C4—H4A114.5H11A—C11—H11C109.5
C8—C4—H4A114.5H11B—C11—H11C109.5
C3—C4—H4A114.5Si2—C12—H12A109.5
C4—C5—C695.15 (13)Si2—C12—H12B109.5
C4—C5—H5A112.7H12A—C12—H12B109.5
C6—C5—H5A112.7Si2—C12—H12C109.5
C4—C5—H5B112.7H12A—C12—H12C109.5
C6—C5—H5B112.7H12B—C12—H12C109.5
H5A—C5—H5B110.2Si2—C13—H13A109.5
C5—C6—C9101.53 (13)Si2—C13—H13B109.5
C5—C6—C799.69 (14)H13A—C13—H13B109.5
C9—C6—C7110.38 (14)Si2—C13—H13C109.5
C5—C6—H6A114.5H13A—C13—H13C109.5
C9—C6—H6A114.5H13B—C13—H13C109.5
C12—Si2—O4—Si1123.01 (10)C4—C3—C7—C6−1.66 (17)
C13—Si2—O4—Si1−116.32 (10)C5—C6—C7—C1−148.19 (15)
C9—Si2—O4—Si10.51 (10)C9—C6—C7—C1−41.9 (2)
C11—Si1—O4—Si2−122.87 (10)C5—C6—C7—C3−34.41 (16)
C10—Si1—O4—Si2115.37 (10)C9—C6—C7—C371.83 (17)
C8—Si1—O4—Si2−1.94 (10)C5—C4—C8—C9−33.12 (15)
C2—O2—C1—O1−177.51 (17)C3—C4—C8—C971.70 (16)
C2—O2—C1—C72.98 (19)C5—C4—C8—Si186.45 (15)
C1—O2—C2—O3177.48 (16)C3—C4—C8—Si1−168.72 (12)
C1—O2—C2—C3−3.49 (19)O4—Si1—C8—C4−113.01 (13)
O3—C2—C3—C7−178.57 (19)C11—Si1—C8—C45.26 (15)
O2—C2—C3—C72.54 (18)C10—Si1—C8—C4131.21 (14)
O3—C2—C3—C468.7 (3)O4—Si1—C8—C92.82 (12)
O2—C2—C3—C4−110.17 (17)C11—Si1—C8—C9121.09 (12)
C2—C3—C4—C5150.76 (16)C10—Si1—C8—C9−112.96 (12)
C7—C3—C4—C537.17 (16)C5—C6—C9—C836.63 (15)
C2—C3—C4—C843.9 (2)C7—C6—C9—C8−68.39 (17)
C7—C3—C4—C8−69.65 (17)C5—C6—C9—Si2−82.62 (15)
C8—C4—C5—C655.13 (15)C7—C6—C9—Si2172.36 (12)
C3—C4—C5—C6−57.91 (15)C4—C8—C9—C6−2.16 (15)
C4—C5—C6—C9−56.45 (15)Si1—C8—C9—C6−126.78 (11)
C4—C5—C6—C756.84 (14)C4—C8—C9—Si2121.97 (11)
O1—C1—C7—C3179.3 (2)Si1—C8—C9—Si2−2.65 (13)
O2—C1—C7—C3−1.26 (18)O4—Si2—C9—C6117.15 (13)
O1—C1—C7—C6−67.3 (3)C12—Si2—C9—C6−1.00 (16)
O2—C1—C7—C6112.13 (17)C13—Si2—C9—C6−125.37 (14)
C2—C3—C7—C1−0.75 (17)O4—Si2—C9—C81.49 (12)
C4—C3—C7—C1119.55 (15)C12—Si2—C9—C8−116.66 (12)
C2—C3—C7—C6−121.95 (14)C13—Si2—C9—C8118.97 (12)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C11—H11A···O3i0.982.563.432 (2)149
C12—H12C···O3ii0.982.573.443 (2)149

Symmetry codes: (i) x−1/2, −y+1/2, z−1/2; (ii) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2490).

References

  • Buese, M. A. (1986). US Patent No. 4 598 135.
  • Eddy, V. J. & Hallgren, J. E. (1985). US Patent No. 4 542 226.
  • Eddy, V. J. & Hallgren, J. E. (1987). J. Org. Chem 52, 1903–1906.
  • Eddy, V. J., Hallgren, J. E. & Colborn, R. E. (1990). J. Polym. Sci. Part A Polym. Chem.28, 2417–2426.
  • Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  • Lewis, L. N. (1990). J. Am. Chem. Soc 112, 5998–6004.
  • Lewis, L. N. & Uriarte, R. J. (1990). Organometallics, 9, 621–625.
  • Onopchenko, A. & Sabourin, E. T. (1987). J. Org. Chem 52, 4118–4121.
  • Rigaku (2001). RAPID-AUTO Rigaku Corporation, Tokyo, Japan.
  • Ryang, H.-S. (1983). US Patent No. 4 381 396.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Swint, S. A. & Buese, M. A. (1991). J. Organomet. Chem 402, 145–153.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography