PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 April 1; 65(Pt 4): o821–o822.
Published online 2009 March 25. doi:  10.1107/S1600536809009751
PMCID: PMC2968802

(E)-N′-(4-Bromo­benzyl­idene)-p-toluene­sulfonohydrazide

Abstract

In the title compound, C14H13BrN2O2S, a novel sulfonamide derivative, inter­molecular N—H(...)O and C—H(...)O hydrogen bonds link neighbouring mol­ecules into different dimers along the b axis, generating R 2 2(8) and R 2 2(16) ring motifs. The dihedral angle between the benzene rings is 82.39 (13)°. The crystal structure is further stabilized by inter­molecular π–π stacking inter­actions [centroid–centroid distances = 3.867 (2)–3.9548 (8) Å].

Related literature

For bond-length data, see: Allen et al. (1987 [triangle]). For hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]). For related structures and applications, see, for example: Kia et al. (2008a [triangle],b [triangle]); Tabatabaee et al. (2007 [triangle]); Ali et al. (2007 [triangle]); Tierney et al. 2006 [triangle]; Krygowski et al. (1998 [triangle]); Mehrabi et al. (2008 [triangle]); Kayser et al. (2004 [triangle]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o821-scheme1.jpg

Experimental

Crystal data

  • C14H13BrN2O2S
  • M r = 353.23
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o821-efi1.jpg
  • a = 5.9565 (3) Å
  • b = 9.4005 (3) Å
  • c = 12.8020 (6) Å
  • α = 97.153 (2)°
  • β = 96.350 (2)°
  • γ = 92.125 (1)°
  • V = 705.95 (5) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 3.06 mm−1
  • T = 100 K
  • 0.57 × 0.15 × 0.07 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.276, T max = 0.819
  • 18030 measured reflections
  • 5040 independent reflections
  • 4098 reflections with I > 2˘I)
  • R int = 0.034

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040
  • wR(F 2) = 0.106
  • S = 1.11
  • 5040 reflections
  • 187 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.63 e Å−3
  • Δρmin = −0.56 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT (Bruker, 2005 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809009751/rz2299sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809009751/rz2299Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

HKF and RK thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. RK thanks Universiti Sains Malaysia for a post-doctoral research fellowship. BE thanks Shiraz University for financial support. HK thanks PNU for financial support. HKF also thanks Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

supplementary crystallographic information

Comment

Sulfonamides were the first class of antimicrobial agents to be discovered. They inhibit dihydropteroate synthetase in the bacterial folic acid pathway. Although their clinical role has diminished, they are still useful in certain situations, because of its efficacy and low cost (Krygowski et al., 1998). Sulfonamides (sulfanilamide, sulfamethoxazole, sulfafurazole) are structural analogues of p-aminobenzoic acid (PABA) and compete with PABA to block its conversion to dihydrofolic acid. These agents are generally used in combination with other drugs (usually sulfonamides) to prevent or treat a number of bacterial and parasitic infections (Tierney et al., 2006). Because of the above impotrtant features, we report the crystal structure of the title compound.

The title compund (Fig. 1), is a novel sulfonamide derivative. Bond lengths (Allen et al., 1987) and angles are within the normal ranges and are comparable with the related staructures (Kia et al. 2008a,b; Mehrabi et al., 2008; Ali et al. 2007). Intermolecular N—H···O and C—H···O hydrogen bonds link neighbouring molecules by R22(8) and R22(16) ring motifs (Bernstein et al., 1995), respectively, into different dimers along the b axis. The dihedral angle between the two benzene rings is 82.39 (13)°. The crystal structure is further stabilized by intermolecular π-π stacking interactions [Cg1···Cg1iii = 3.9319 (15) and Cg2···Cg2iv = 3.8677 (16) Å; the perpendicular distances are 3.6548 (10) and 3.6189 (11) Å, respectively. Symmetry codes: (iii) -x, 2 - y, 1 - z; (iv) 2 - x, 1 - y, 2 - z].

Experimental

p-Tosylhydrazine (2 mmol) was added to a 50 ml refluxing ethanolic solution of 4-bromobenzaldehyde (2 mmol). The mixture was stirred for 2 h. After cooling, the colorless crystalline solid was isolated by filtration, washed with cold ethanol, and re-crystallized from ethanol.

Refinement

H atom bound to N1 was located from the difference Fourier map and refined freely; see Table 1. The rest of the hydrogen atoms were positioned geometrically and refined as riding model. A rotating group model was used for the methyl group. The highest peak (0.63 e.Å-3) is located 1.77 Å from H2A and the deepest hole (-0.56 e.Å-3) is located 1.47 Å from H2A. The crystal structure was twinned by a pseudo-twofold rotation about (0 1 0) with a refined BASF ratio of 0.115 (1)/0.885 (1).

Figures

Fig. 1.
The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atomic numbering.
Fig. 2.
The crystal packing of the title compound, viewed down the a axis, showing linking of different dimers along the b axis through N—H···O and C—H···O interactions. Intermolecular hydrogen bonds ...

Crystal data

C14H13BrN2O2SZ = 2
Mr = 353.23F(000) = 356
Triclinic, P1Dx = 1.662 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.9565 (3) ÅCell parameters from 7222 reflections
b = 9.4005 (3) Åθ = 2.5–34.1°
c = 12.8020 (6) ŵ = 3.06 mm1
α = 97.153 (2)°T = 100 K
β = 96.350 (2)°Block, colourless
γ = 92.125 (1)°0.57 × 0.14 × 0.07 mm
V = 705.95 (5) Å3

Data collection

Bruker SMART APEXII CCD area-detector diffractometer5040 independent reflections
Radiation source: fine-focus sealed tube4098 reflections with I > 2˘I)
graphiteRint = 0.034
[var phi] and ω scansθmax = 32.5°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Bruker, 2005)h = −9→8
Tmin = 0.276, Tmax = 0.819k = −14→14
18030 measured reflectionsl = −18→19

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H atoms treated by a mixture of independent and constrained refinement
S = 1.11w = 1/[σ2(Fo2) + (0.0387P)2 + 1.0631P] where P = (Fo2 + 2Fc2)/3
5040 reflections(Δ/σ)max < 0.001
187 parametersΔρmax = 0.63 e Å3
0 restraintsΔρmin = −0.56 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br10.81285 (5)0.24366 (3)−0.11229 (2)0.02400 (8)
S10.25512 (10)0.69735 (6)0.50609 (4)0.01269 (11)
O10.1164 (3)0.66003 (19)0.58555 (14)0.0166 (3)
O20.4777 (3)0.76093 (19)0.53840 (15)0.0171 (3)
N10.2703 (4)0.5426 (2)0.43423 (17)0.0147 (4)
N20.3865 (4)0.5374 (2)0.34562 (16)0.0149 (4)
C1−0.1178 (4)0.7666 (3)0.3846 (2)0.0162 (4)
H1A−0.18950.68300.40340.019*
C2−0.2334 (4)0.8507 (3)0.3168 (2)0.0187 (5)
H2A−0.38510.82310.28840.022*
C3−0.1313 (5)0.9747 (3)0.2894 (2)0.0179 (5)
C40.0912 (5)1.0145 (3)0.3328 (2)0.0194 (5)
H4A0.16141.10000.31620.023*
C50.2112 (4)0.9315 (3)0.3994 (2)0.0162 (4)
H5A0.36320.95870.42750.019*
C60.1059 (4)0.8075 (2)0.42462 (19)0.0139 (4)
C70.3238 (4)0.4296 (3)0.2753 (2)0.0159 (4)
H7A0.19800.36950.28500.019*
C80.4385 (4)0.3958 (3)0.18089 (19)0.0156 (4)
C90.3420 (5)0.2868 (3)0.1030 (2)0.0190 (5)
H9A0.20050.24170.11060.023*
C100.4502 (5)0.2435 (3)0.0144 (2)0.0208 (5)
H10A0.38330.1699−0.03870.025*
C110.6578 (4)0.3098 (3)0.0051 (2)0.0176 (5)
C120.7559 (5)0.4195 (3)0.0805 (2)0.0196 (5)
H12A0.89710.46460.07220.023*
C130.6460 (5)0.4627 (3)0.1682 (2)0.0180 (5)
H13A0.71190.53810.22000.022*
C14−0.2579 (5)1.0639 (3)0.2146 (2)0.0255 (6)
H14A−0.25041.16430.24710.038*
H14B−0.41641.02820.20000.038*
H14C−0.18931.05720.14810.038*
H1N10.160 (6)0.483 (4)0.436 (3)0.020 (8)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.02205 (14)0.03319 (15)0.01596 (12)0.00426 (11)0.00449 (10)−0.00286 (10)
S10.0128 (3)0.0121 (2)0.0130 (2)−0.00060 (19)0.0009 (2)0.00153 (18)
O10.0189 (9)0.0168 (8)0.0144 (8)−0.0017 (7)0.0046 (7)0.0014 (6)
O20.0138 (8)0.0154 (8)0.0213 (9)−0.0018 (6)−0.0020 (7)0.0039 (6)
N10.0160 (10)0.0117 (8)0.0167 (9)−0.0009 (7)0.0047 (8)0.0009 (7)
N20.0151 (10)0.0159 (9)0.0141 (9)0.0022 (7)0.0030 (7)0.0020 (7)
C10.0137 (11)0.0157 (10)0.0186 (11)−0.0015 (8)0.0005 (9)0.0017 (8)
C20.0155 (11)0.0206 (11)0.0190 (11)0.0027 (9)−0.0012 (9)0.0010 (9)
C30.0232 (13)0.0135 (10)0.0158 (10)0.0046 (9)−0.0007 (9)−0.0011 (8)
C40.0237 (13)0.0123 (10)0.0219 (12)0.0007 (9)0.0014 (10)0.0027 (9)
C50.0166 (11)0.0138 (10)0.0174 (11)−0.0009 (8)0.0007 (9)0.0006 (8)
C60.0150 (10)0.0131 (9)0.0136 (10)0.0004 (8)0.0020 (8)0.0017 (8)
C70.0154 (11)0.0151 (10)0.0178 (11)0.0011 (8)0.0029 (9)0.0031 (8)
C80.0159 (11)0.0159 (10)0.0154 (10)0.0034 (8)0.0011 (9)0.0036 (8)
C90.0168 (12)0.0195 (11)0.0202 (12)0.0015 (9)0.0013 (9)0.0007 (9)
C100.0207 (13)0.0228 (12)0.0169 (11)0.0010 (10)0.0005 (10)−0.0033 (9)
C110.0175 (11)0.0214 (11)0.0142 (10)0.0045 (9)0.0022 (9)0.0023 (9)
C120.0188 (12)0.0212 (11)0.0197 (12)0.0010 (9)0.0055 (10)0.0037 (9)
C130.0195 (12)0.0170 (11)0.0172 (11)−0.0014 (9)0.0028 (9)0.0008 (9)
C140.0335 (16)0.0178 (11)0.0226 (13)0.0073 (11)−0.0081 (11)0.0010 (9)

Geometric parameters (Å, °)

Br1—C111.901 (2)C5—C61.393 (3)
S1—O21.4297 (19)C5—H5A0.9500
S1—O11.4469 (18)C7—C81.460 (3)
S1—N11.633 (2)C7—H7A0.9500
S1—C61.756 (2)C8—C91.396 (4)
N1—N21.389 (3)C8—C131.400 (4)
N1—H1N10.85 (3)C9—C101.390 (4)
N2—C71.283 (3)C9—H9A0.9500
C1—C21.390 (3)C10—C111.388 (4)
C1—C61.395 (3)C10—H10A0.9500
C1—H1A0.9500C11—C121.385 (4)
C2—C31.396 (4)C12—C131.387 (4)
C2—H2A0.9500C12—H12A0.9500
C3—C41.398 (4)C13—H13A0.9500
C3—C141.509 (4)C14—H14A0.9800
C4—C51.386 (4)C14—H14B0.9800
C4—H4A0.9500C14—H14C0.9800
O2—S1—O1119.47 (11)N2—C7—C8122.5 (2)
O2—S1—N1109.68 (11)N2—C7—H7A118.8
O1—S1—N1102.07 (11)C8—C7—H7A118.8
O2—S1—C6108.68 (11)C9—C8—C13119.0 (2)
O1—S1—C6109.36 (11)C9—C8—C7118.2 (2)
N1—S1—C6106.81 (11)C13—C8—C7122.7 (2)
N2—N1—S1118.59 (16)C10—C9—C8120.9 (2)
N2—N1—H1N1120 (2)C10—C9—H9A119.5
S1—N1—H1N1114 (2)C8—C9—H9A119.5
C7—N2—N1113.5 (2)C11—C10—C9118.7 (2)
C2—C1—C6118.6 (2)C11—C10—H10A120.6
C2—C1—H1A120.7C9—C10—H10A120.6
C6—C1—H1A120.7C12—C11—C10121.6 (2)
C1—C2—C3121.4 (2)C12—C11—Br1119.75 (19)
C1—C2—H2A119.3C10—C11—Br1118.67 (19)
C3—C2—H2A119.3C11—C12—C13119.3 (2)
C2—C3—C4118.5 (2)C11—C12—H12A120.4
C2—C3—C14120.8 (2)C13—C12—H12A120.4
C4—C3—C14120.6 (2)C12—C13—C8120.5 (2)
C5—C4—C3121.2 (2)C12—C13—H13A119.8
C5—C4—H4A119.4C8—C13—H13A119.8
C3—C4—H4A119.4C3—C14—H14A109.5
C4—C5—C6119.1 (2)C3—C14—H14B109.5
C4—C5—H5A120.5H14A—C14—H14B109.5
C6—C5—H5A120.5C3—C14—H14C109.5
C5—C6—C1121.2 (2)H14A—C14—H14C109.5
C5—C6—S1120.30 (19)H14B—C14—H14C109.5
C1—C6—S1118.52 (18)
O2—S1—N1—N2−54.7 (2)O2—S1—C6—C1−179.30 (19)
O1—S1—N1—N2177.61 (18)O1—S1—C6—C1−47.3 (2)
C6—S1—N1—N262.9 (2)N1—S1—C6—C162.4 (2)
S1—N1—N2—C7−156.20 (19)N1—N2—C7—C8−173.9 (2)
C6—C1—C2—C3−0.8 (4)N2—C7—C8—C9−172.5 (2)
C1—C2—C3—C4−0.6 (4)N2—C7—C8—C1310.9 (4)
C1—C2—C3—C14179.2 (2)C13—C8—C9—C100.7 (4)
C2—C3—C4—C51.6 (4)C7—C8—C9—C10−176.0 (2)
C14—C3—C4—C5−178.3 (2)C8—C9—C10—C110.6 (4)
C3—C4—C5—C6−1.0 (4)C9—C10—C11—C12−1.5 (4)
C4—C5—C6—C1−0.5 (4)C9—C10—C11—Br1176.8 (2)
C4—C5—C6—S1178.40 (19)C10—C11—C12—C131.0 (4)
C2—C1—C6—C51.4 (4)Br1—C11—C12—C13−177.21 (19)
C2—C1—C6—S1−177.52 (19)C11—C12—C13—C80.3 (4)
O2—S1—C6—C51.8 (2)C9—C8—C13—C12−1.2 (4)
O1—S1—C6—C5133.8 (2)C7—C8—C13—C12175.4 (2)
N1—S1—C6—C5−116.5 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1N1···O1i0.85 (4)2.06 (4)2.902 (3)171 (4)
C14—H14A···O1ii0.982.573.420 (3)145

Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x, −y+2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2299).

References

  • Ali, H. M., Laila, M., Wan Jefrey, B. & Ng, S. W. (2007). Acta Cryst. E63, o1617–o1618.
  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  • Kayser, F. H., Bienz, K. A., Eckert, J. & Zinkernagel, R. M. (2004). Medical Microbiology, pp. 1–20. Berlin: Thieme Medical.
  • Kia, R., Fun, H.-K. & Kargar, H. (2008a). Acta Cryst. E64, o2341. [PMC free article] [PubMed]
  • Kia, R., Fun, H.-K. & Kargar, H. (2008b). Acta Cryst. E64, o2424. [PMC free article] [PubMed]
  • Krygowski, T. M., Pietka, E., Anulewicz, R., Cyranski, M. K. & Nowacki, J. (1998). Tetrahedron, 54, 12289–12292.
  • Mehrabi, H., Kia, R., Hassanzadeh, A., Ghobadi, S. & Khavasi, H. R. (2008). Acta Cryst. E64, o1845. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Tabatabaee, M., Anari-Abbasnejad, M., Nozari, N., Sadegheian, S. & Ghasemzadeh, M. (2007). Acta Cryst. E63, o2099–o2100.
  • Tierney, M. S. Jr, McPhee, J. & Papadakis, M. A. (2006). Current Medical Diagnosis & Treatment, 45th ed., pp. 1–50. New York: McGraw–Hill Medical.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography