PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 April 1; 65(Pt 4): o840.
Published online 2009 March 25. doi:  10.1107/S1600536809009945
PMCID: PMC2968799

2,4-Bis(3-chloro­phen­yl)-3-aza­bicyclo­[3.3.1]nonan-9-one

Abstract

In the mol­ecular structure of the title compound, C20H19Cl2NO, the bicyclic system adopts a twin-chair conformation with equatorial orientations of both substituents. The dihedral angle between the aromatic rings is 43.60 (2)° with respect to each other. The crystal structure is stabilized by weak N—H(...)O and strong C—H(...)O inter­actions.

Related literature

For the biological significance, synthesis and stereochemistry of 3-aza­bicyclo­nonan-9-ones, see: Jeyaraman & Avila (1981 [triangle]). For similiar structures, see: Parthiban et al. (2008a [triangle],b [triangle],c [triangle],d [triangle],e [triangle]). For puckering parameters, see: Web & Becker (1967 [triangle]); Cremer & Pople (1975 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o840-scheme1.jpg

Experimental

Crystal data

  • C20H19Cl2NO
  • M r = 360.26
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o840-efi1.jpg
  • a = 6.9950 (14) Å
  • b = 12.180 (2) Å
  • c = 20.770 (4) Å
  • V = 1769.6 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.37 mm−1
  • T = 298 K
  • 0.31 × 0.25 × 0.22 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 1999 [triangle]) T min = 0.875, T max = 0.922
  • 23614 measured reflections
  • 4284 independent reflections
  • 2762 reflections with I > 2σ(I)
  • R int = 0.046

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041
  • wR(F 2) = 0.084
  • S = 1.01
  • 4284 reflections
  • 221 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.16 e Å−3
  • Δρmin = −0.25 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1756 Friedel pairs
  • Flack parameter: −0.05 (5)

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT-Plus (Bruker, 2004 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809009945/gw2060sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809009945/gw2060Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the Department of Chemistry, IIT Madras, for the X-ray data collection.

supplementary crystallographic information

Comment

Due to their biological significance (Jeyaraman & Avila, 1981), the synthesis and stereochemistry of 3-azabicyclononan-9-ones are more important in current affairs (Parthiban et al., 2008a,b,c,d,e). The title compound C20 H19 Cl2 N O, exists in twin-chair conformation with equatorial orientations of the meta chlorophenyl groups on both sides of the secondary amino group with the torsion angles of C8—C2—C1—C9 and C8—C6—C7—C15 are -177.78 (4)and 177.42 (3)°, respectively. A study of torsion angles, asymmetry parameters and least-squares plane calculation shows that the piperidine ring adopts near ideal chair conformation with the deviation of ring atoms N1 and C8 from the C1/C2/C6/C7 plane by -0.669 (2) and 0.704 (3) Å, respectively, QT = 0.617 (2) Å, q(2)=0.021 (2) and q(3)=0.617 (2) Å, θ = 2.71 (19)°. (Cremer & Pople, 1975; Web & Becker, 1967) whereas the cyclohexane ring deviate from the ideal chair conformation; the cyclohexane atoms C4 and C8 deviate from the C2/C3/C5/C6 plane by -0.545 (4) and 0.714 (3)°, respectively, QT = 0.562 (2) Å, q(2)=0.128 (2) and q(3)=0.549 (2) Å, θ = 12.7 (2)°. (Cremer & Pople, 1975). The aryl groups are oriented at an angle of 43.60 (2)° to each other.

The crystal structure is stabilized by weak N—H···O (3.129 (3)Å and strong C—H···O interactions [C1—H···O1 (3.46 (3)Å and C7—H···O1 3.296 (2) Å]. Interestingly,the same acceptor O1 is involved in trifurcated hydrogen bond with N1,C1 and C7 where the Oxygen atoms is at the apex forming a tripyramidal.

Experimental

A mixture of cyclohexanone (0.05 mol) and meta chlorobenzaldehyde (0.1 mol) was added to a warm solution of ammonium acetate (0.075 mol) in 50 ml of absolute ethanol. The mixture was gently warmed on a hot plate till the yellow color was formed during the mixing of the reactants and cooled to room temperature. Then 50 ml of ether was added and allowed to stir over night at room temperature. At the end, the crude azabicyclic ketone was separated by filtration and washed with 1:5 ethanol-ether mixture till the solid became colourless. Recrystallization of the compound from ethanol gave X-ray diffraction quality crystals of 2,4-bis(3-chlorophenyl)-3-azabicyclo[3.3.1]nonan-9-one.

Refinement

Nitrogen H atoms were located in a difference Fourier map and refined isotropically. Other hydrogen atoms were fixed geometrically and allowed to ride on the parent carbon atoms,with aromatic C—H =0.93 Å, aliphatic C—H = 0.98Å and methylen C—H = 0.97 Å. The displacement parameters were set for phenyl,methylen and aliphatic H atoms at Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
ORTEP of the molecule with atoms represented as 30% probability ellipsoids.
Fig. 2.
Packing diagram of molecules showing the N—H···O and C—H···O interactions.

Crystal data

C20H19Cl2NOF(000) = 752
Mr = 360.26Dx = 1.352 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 5421 reflections
a = 6.9950 (14) Åθ = 2.6–22.5°
b = 12.180 (2) ŵ = 0.37 mm1
c = 20.770 (4) ÅT = 298 K
V = 1769.6 (6) Å3Block, colourless
Z = 40.31 × 0.25 × 0.22 mm

Data collection

Bruker APEXII CCD area-detector diffractometer4284 independent reflections
Radiation source: fine-focus sealed tube2762 reflections with I > 2σ(I)
graphiteRint = 0.046
ω scansθmax = 28.3°, θmin = 2.6°
Absorption correction: multi-scan (SADABS; Bruker, 1999)h = −8→9
Tmin = 0.875, Tmax = 0.922k = −16→16
23614 measured reflectionsl = −27→16

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.084w = 1/[σ2(Fo2) + (0.0341P)2 + 0.181P] where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.002
4284 reflectionsΔρmax = 0.16 e Å3
221 parametersΔρmin = −0.25 e Å3
0 restraintsAbsolute structure: Flack (1983), 1756 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: −0.05 (5)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)are estimated using the full covariance matrix. The cell e.s.d.'s are takeninto account individually in the estimation of e.s.d.'s in distances, anglesand torsion angles; correlations between e.s.d.'s in cell parameters are onlyused when they are defined by crystal symmetry. An approximate (isotropic)treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR andgoodness of fit S are based on F2, conventional R-factors R are basedon F, with F set to zero for negative F2. The threshold expression ofF2 > σ(F2) is used only for calculating R-factors(gt) etc. and isnot relevant to the choice of reflections for refinement. R-factors basedon F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.1155 (3)0.91094 (15)0.96470 (9)0.0351 (5)
H10.08390.86901.00350.042*
C2−0.0754 (3)0.94712 (17)0.93253 (10)0.0425 (5)
H2−0.14830.99100.96350.051*
C3−0.0574 (3)1.01301 (18)0.86920 (11)0.0522 (6)
H3A−0.18291.03980.85710.063*
H3B0.02361.07630.87680.063*
C40.0248 (4)0.94740 (18)0.81344 (10)0.0517 (6)
H4A0.00350.98740.77370.062*
H4B0.16170.94000.81930.062*
C5−0.0633 (3)0.83391 (19)0.80751 (10)0.0493 (6)
H5A0.01410.79060.77820.059*
H5B−0.18940.84110.78860.059*
C6−0.0815 (3)0.77124 (16)0.87165 (10)0.0405 (5)
H6−0.15830.70500.86460.049*
C70.1088 (3)0.73829 (16)0.90524 (9)0.0373 (5)
H70.07670.70170.94590.045*
C8−0.1852 (3)0.84501 (17)0.91799 (9)0.0417 (5)
C90.2390 (3)1.00628 (15)0.98456 (9)0.0353 (5)
C100.3661 (3)1.05578 (17)0.94271 (10)0.0485 (6)
H100.37801.02920.90090.058*
C110.4763 (4)1.14476 (18)0.96219 (12)0.0589 (7)
H110.56091.17730.93340.071*
C120.4608 (3)1.18510 (18)1.02405 (11)0.0514 (6)
H120.53301.24521.03720.062*
C130.3367 (3)1.13481 (15)1.06568 (10)0.0430 (5)
C140.2249 (3)1.04678 (16)1.04695 (9)0.0399 (5)
H140.14041.01481.07600.048*
C150.2255 (3)0.65933 (15)0.86531 (10)0.0388 (5)
C160.2048 (3)0.54727 (17)0.87560 (12)0.0543 (6)
H160.12300.52220.90770.065*
C170.3056 (4)0.47232 (18)0.83825 (15)0.0679 (8)
H170.28950.39750.84530.081*
C180.4283 (4)0.5073 (2)0.79115 (13)0.0619 (7)
H180.49610.45700.76640.074*
C190.4494 (3)0.61781 (19)0.78124 (12)0.0514 (6)
C200.3510 (3)0.69381 (17)0.81787 (10)0.0457 (5)
H200.36920.76840.81060.055*
Cl10.32230 (11)1.18133 (5)1.14500 (3)0.0681 (2)
Cl20.60281 (11)0.66335 (6)0.72080 (3)0.0794 (2)
N10.2172 (3)0.83753 (13)0.92051 (8)0.0358 (4)
O1−0.3405 (2)0.82264 (14)0.94107 (7)0.0583 (4)
H1A0.324 (3)0.8184 (15)0.9342 (9)0.033 (6)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0369 (12)0.0377 (11)0.0307 (9)−0.0016 (9)0.0059 (9)−0.0005 (9)
C20.0360 (12)0.0472 (12)0.0443 (12)0.0048 (10)0.0048 (10)−0.0061 (10)
C30.0502 (15)0.0476 (13)0.0587 (15)0.0068 (11)−0.0079 (12)0.0076 (11)
C40.0549 (14)0.0579 (14)0.0421 (12)−0.0040 (12)−0.0058 (11)0.0153 (11)
C50.0462 (14)0.0647 (14)0.0370 (11)0.0005 (12)−0.0065 (10)0.0008 (11)
C60.0358 (12)0.0435 (12)0.0421 (12)−0.0079 (10)−0.0046 (10)−0.0016 (9)
C70.0386 (12)0.0371 (11)0.0363 (11)−0.0059 (10)−0.0013 (9)0.0008 (9)
C80.0307 (12)0.0577 (13)0.0366 (11)0.0013 (11)−0.0007 (10)0.0090 (10)
C90.0347 (11)0.0353 (11)0.0359 (11)0.0048 (9)0.0008 (9)−0.0016 (9)
C100.0553 (14)0.0469 (12)0.0433 (12)−0.0088 (12)0.0088 (11)−0.0102 (10)
C110.0656 (16)0.0530 (15)0.0580 (14)−0.0152 (13)0.0154 (13)−0.0035 (12)
C120.0536 (15)0.0388 (12)0.0619 (15)−0.0075 (12)−0.0048 (12)−0.0081 (11)
C130.0500 (13)0.0381 (11)0.0409 (11)0.0058 (10)−0.0065 (11)−0.0082 (9)
C140.0406 (12)0.0422 (11)0.0368 (11)0.0054 (10)0.0017 (9)0.0006 (9)
C150.0396 (12)0.0355 (11)0.0412 (11)−0.0008 (9)−0.0085 (10)−0.0074 (9)
C160.0499 (15)0.0423 (13)0.0708 (16)−0.0074 (12)−0.0046 (12)−0.0040 (11)
C170.0720 (19)0.0362 (13)0.096 (2)0.0028 (13)−0.0140 (17)−0.0134 (13)
C180.0565 (16)0.0550 (16)0.0743 (18)0.0137 (13)−0.0127 (15)−0.0296 (14)
C190.0460 (14)0.0588 (15)0.0494 (13)0.0060 (11)−0.0049 (11)−0.0193 (11)
C200.0507 (13)0.0386 (11)0.0477 (12)0.0012 (11)−0.0006 (11)−0.0109 (10)
Cl10.0959 (5)0.0649 (4)0.0435 (3)−0.0048 (4)−0.0084 (3)−0.0171 (3)
Cl20.0814 (5)0.0891 (5)0.0675 (4)0.0069 (4)0.0235 (4)−0.0261 (4)
N10.0305 (10)0.0393 (9)0.0376 (9)0.0018 (9)−0.0019 (8)−0.0052 (8)
O10.0363 (9)0.0793 (11)0.0593 (10)−0.0063 (9)0.0087 (8)0.0071 (9)

Geometric parameters (Å, °)

C1—N11.465 (2)C9—C101.382 (3)
C1—C91.505 (3)C9—C141.390 (3)
C1—C21.557 (3)C10—C111.390 (3)
C1—H10.9800C10—H100.9300
C2—C81.493 (3)C11—C121.380 (3)
C2—C31.546 (3)C11—H110.9300
C2—H20.9800C12—C131.369 (3)
C3—C41.520 (3)C12—H120.9300
C3—H3A0.9700C13—C141.383 (3)
C3—H3B0.9700C13—Cl11.745 (2)
C4—C51.518 (3)C14—H140.9300
C4—H4A0.9700C15—C161.389 (3)
C4—H4B0.9700C15—C201.385 (3)
C5—C61.541 (3)C16—C171.390 (3)
C5—H5A0.9700C16—H160.9300
C5—H5B0.9700C17—C181.370 (4)
C6—C81.503 (3)C17—H170.9300
C6—C71.556 (3)C18—C191.369 (3)
C6—H60.9800C18—H180.9300
C7—N11.462 (3)C19—C201.382 (3)
C7—C151.510 (3)C19—Cl21.742 (3)
C7—H70.9800C20—H200.9300
C8—O11.218 (2)N1—H1A0.83 (2)
N1—C1—C9111.35 (16)O1—C8—C2124.5 (2)
N1—C1—C2108.66 (16)O1—C8—C6123.3 (2)
C9—C1—C2113.05 (16)C2—C8—C6112.28 (17)
N1—C1—H1107.9C10—C9—C14118.52 (19)
C9—C1—H1107.9C10—C9—C1122.25 (18)
C2—C1—H1107.9C14—C9—C1119.23 (18)
C8—C2—C3107.59 (18)C9—C10—C11120.9 (2)
C8—C2—C1107.01 (16)C9—C10—H10119.5
C3—C2—C1116.25 (17)C11—C10—H10119.5
C8—C2—H2108.6C12—C11—C10120.3 (2)
C3—C2—H2108.6C12—C11—H11119.8
C1—C2—H2108.6C10—C11—H11119.8
C4—C3—C2113.96 (17)C13—C12—C11118.6 (2)
C4—C3—H3A108.8C13—C12—H12120.7
C2—C3—H3A108.8C11—C12—H12120.7
C4—C3—H3B108.8C12—C13—C14121.8 (2)
C2—C3—H3B108.8C12—C13—Cl1119.18 (17)
H3A—C3—H3B107.7C14—C13—Cl1118.97 (16)
C5—C4—C3112.78 (19)C13—C14—C9119.79 (19)
C5—C4—H4A109.0C13—C14—H14120.1
C3—C4—H4A109.0C9—C14—H14120.1
C5—C4—H4B109.0C16—C15—C20118.3 (2)
C3—C4—H4B109.0C16—C15—C7119.01 (19)
H4A—C4—H4B107.8C20—C15—C7122.72 (18)
C4—C5—C6114.49 (17)C15—C16—C17120.4 (2)
C4—C5—H5A108.6C15—C16—H16119.8
C6—C5—H5A108.6C17—C16—H16119.8
C4—C5—H5B108.6C18—C17—C16120.8 (2)
C6—C5—H5B108.6C18—C17—H17119.6
H5A—C5—H5B107.6C16—C17—H17119.6
C8—C6—C5107.32 (17)C19—C18—C17118.7 (2)
C8—C6—C7106.25 (16)C19—C18—H18120.6
C5—C6—C7116.39 (17)C17—C18—H18120.6
C8—C6—H6108.9C18—C19—C20121.5 (2)
C5—C6—H6108.9C18—C19—Cl2119.17 (19)
C7—C6—H6108.9C20—C19—Cl2119.36 (18)
N1—C7—C15111.44 (16)C19—C20—C15120.3 (2)
N1—C7—C6109.14 (16)C19—C20—H20119.9
C15—C7—C6112.37 (16)C15—C20—H20119.9
N1—C7—H7107.9C7—N1—C1112.88 (15)
C15—C7—H7107.9C7—N1—H1A108.0 (14)
C6—C7—H7107.9C1—N1—H1A113.0 (14)
N1—C1—C2—C858.1 (2)C1—C9—C10—C11179.1 (2)
C9—C1—C2—C8−177.77 (16)C9—C10—C11—C120.2 (4)
N1—C1—C2—C3−62.1 (2)C10—C11—C12—C130.8 (4)
C9—C1—C2—C362.0 (2)C11—C12—C13—C14−1.3 (3)
C8—C2—C3—C4−53.3 (2)C11—C12—C13—Cl1177.49 (19)
C1—C2—C3—C466.6 (3)C12—C13—C14—C90.9 (3)
C2—C3—C4—C545.2 (3)Cl1—C13—C14—C9−177.89 (16)
C3—C4—C5—C6−45.3 (3)C10—C9—C14—C130.0 (3)
C4—C5—C6—C852.9 (2)C1—C9—C14—C13−179.61 (17)
C4—C5—C6—C7−65.9 (2)N1—C7—C15—C16143.69 (19)
C8—C6—C7—N1−58.4 (2)C6—C7—C15—C16−93.5 (2)
C5—C6—C7—N160.9 (2)N1—C7—C15—C20−37.3 (3)
C8—C6—C7—C15177.42 (16)C6—C7—C15—C2085.5 (2)
C5—C6—C7—C15−63.2 (2)C20—C15—C16—C17−1.1 (3)
C3—C2—C8—O1−116.6 (2)C7—C15—C16—C17177.9 (2)
C1—C2—C8—O1117.8 (2)C15—C16—C17—C180.7 (4)
C3—C2—C8—C663.9 (2)C16—C17—C18—C19−0.3 (4)
C1—C2—C8—C6−61.7 (2)C17—C18—C19—C200.5 (4)
C5—C6—C8—O1117.0 (2)C17—C18—C19—Cl2−179.20 (19)
C7—C6—C8—O1−117.9 (2)C18—C19—C20—C15−1.0 (4)
C5—C6—C8—C2−63.6 (2)Cl2—C19—C20—C15178.72 (16)
C7—C6—C8—C261.6 (2)C16—C15—C20—C191.3 (3)
N1—C1—C9—C1036.4 (3)C7—C15—C20—C19−177.8 (2)
C2—C1—C9—C10−86.3 (2)C15—C7—N1—C1−174.09 (16)
N1—C1—C9—C14−143.97 (18)C6—C7—N1—C161.2 (2)
C2—C1—C9—C1493.4 (2)C9—C1—N1—C7174.24 (16)
C14—C9—C10—C11−0.6 (3)C2—C1—N1—C7−60.6 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.83 (2)2.35 (2)3.129 (3)155.4 (18)
C7—H7···O1ii0.982.443.296 (2)146

Symmetry codes: (i) x+1, y, z; (ii) x+1/2, −y+3/2, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GW2060).

References

  • Bruker (1999). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2004). APEX2 and SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Jeyaraman, R. & Avila, S. (1981). Chem. Rev.81, 149–174.
  • Parthiban, P., Ramkumar, V., Kim, M. S., Lim, K. T. & Jeong, Y. T. (2008a). Acta Cryst. E64, o1586. [PMC free article] [PubMed]
  • Parthiban, P., Ramkumar, V., Kim, M. S., Lim, K. T. & Jeong, Y. T. (2008b). Acta Cryst. E64, o2332. [PMC free article] [PubMed]
  • Parthiban, P., Ramkumar, V., Kim, M. S., Son, S. M. & Jeong, Y. T. (2008c). Acta Cryst. E64, o2385. [PMC free article] [PubMed]
  • Parthiban, P., Ramkumar, V., Santan, H. D., Kim, J. T. & Jeong, Y. T. (2008d). Acta Cryst. E64, o1710. [PMC free article] [PubMed]
  • Parthiban, P., Thirumurugan, K., Ramkumar, V., Pazhamalai, S. & Jeong, Y. T. (2008e). Acta Cryst. E64, o1708–o1709. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Web, N. C. & Becker, M. R. (1967). J. Chem. Soc. B, pp. 1317–1321.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography