PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 April 1; 65(Pt 4): o720.
Published online 2009 March 11. doi:  10.1107/S1600536809007946
PMCID: PMC2968798

2-[(E)-(2-Phenyl-2H-1,2,3-triazol-4-yl)methyl­eneamino]ethanol

Abstract

In the title Schiff base compound, C11H12N4O, the mol­ecule adopts a trans configuration about the central C=N bond. The dihedral angle between the phenyl ring and the triazole ring is 14.3 (3)°. In the crystal structure, mol­ecules are linked into a one-dimensional supra­molecular chain by inter­molecular O—H(...)N hydrogen bonding between the hydroxyl group and the imino N atom.

Related literature

For related literature on Schiff bases, see: Ali et al. (2002 [triangle]); Borisova et al. (2007 [triangle]); Maheswari et al. (2006 [triangle]). For the crystal structures of similar Schiff bases, see: Nate et al. (1987 [triangle]); Yogavel et al. (2003 [triangle]). For standard bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o720-scheme1.jpg

Experimental

Crystal data

  • C11H12N4O
  • M r = 216.25
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o720-efi1.jpg
  • a = 13.124 (5) Å
  • b = 12.770 (5) Å
  • c = 6.658 (3) Å
  • V = 1115.8 (8) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 295 K
  • 0.12 × 0.07 × 0.03 mm

Data collection

  • Bruker SMART APEX area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2002 [triangle]) T min = 0.989, T max = 0.993
  • 5534 measured reflections
  • 1196 independent reflections
  • 596 reflections with I > 2σ(I)
  • R int = 0.084

Refinement

  • R[F 2 > 2σ(F 2)] = 0.057
  • wR(F 2) = 0.135
  • S = 1.01
  • 1196 reflections
  • 146 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.15 e Å−3
  • Δρmin = −0.14 e Å−3

Data collection: SMART (Bruker, 2002 [triangle]); cell refinement: SAINT (Bruker, 2002 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809007946/wn2313sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809007946/wn2313Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Key Laboratory of Colloid Interface Chemistry of the Ministry of Education (200707). Binzhou University is also thanked for supporting this work (BZXYQNLG200820).

supplementary crystallographic information

Comment

Schiff bases play an important role in coordination chemistry and have demonstrated significant biological activity (Ali et al., 2002; Borisova et al., 2007; Maheswari et al., 2006). The title compound, derived from 2-phenyl-2H-1,2,3-triazole-4-carbaldehyde and 2-aminoethanol, is a potential N3O tetradentate Schiff base ligand. Its crystal structure is described here.

The title molecule (Fig. 1) adopts a trans configuration about the central C═N bond. The dihedral angle between the phenyl ring and the triazole ring is 14.3 (3)°. Atoms C9 and N4 are nearly coplanar with the triazole ring; the maximum deviation from the mean plane through these seven atoms is 0.066 (7) Å for C9. The torsion angles C8—C7—C9—N4 and N3—C7—C9—N4 are 8.4 (11) and -173.2 (6)°, respectively. The bond lengths (Allen et al., 1987) and angles of the molecule are within normal ranges. The N4═C9 [1.255 (5) Å] and N4—C10 [1.461 (5) Å] bond distances are comparable to those found in similar Schiff base compounds, such as 2-(2-(2-(4-phenylpiperazinyl)ethoxy)benzylideneamino)ethanol (Nate et al., 1987) and 1,4-bis(2-hydroxy-3-(N-(2-hydroxyethyl)imino)-5-methylbenzyl)piperazine (Yogavel et al., 2003). In the crystal structure, O1—H1···N4 intermolecular hydrogen bonds (Table 1 and Fig. 2), formed between the hydroxyl group and the imino N, link the molecules into a one-dimension supramolecular chain.

Experimental

2-Phenyl-2H-1,2,3-triazole-4-carbaldehyde (0.17 g, 1 mmol) and 2-aminoethanol (0.06 g, 1 mmol) were refluxed for 30 min in a methanol solution (15 ml). The reaction mixture was cooled to room temprature and filtered. After allowing the filtrate to stand in air for 3 d, pale yellow plate crystals (yield 76%; mp 346–347 K) were obtained.

Refinement

H atoms were placed at calculated positions and refined in the riding-model approximation, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for Csp2 H atoms, C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C) for methylene H atoms, and O—H = 0.82 Å and Uiso(H) = 1.5Ueq(C) for the hydroxyl H atom. In the absence of significant anomalous scattering effects, Friedel pairs were merged.

Figures

Fig. 1.
The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. Hydrogen atoms are shown as spheres of arbitrary radius.
Fig. 2.
The packing of the title compound, viewed down the a axis. The intermolecular hydrogen bonds are shown as dashed lines.

Crystal data

C11H12N4OF(000) = 456
Mr = 216.25Dx = 1.287 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 320 reflections
a = 13.124 (5) Åθ = 2.2–18.5°
b = 12.770 (5) ŵ = 0.09 mm1
c = 6.658 (3) ÅT = 295 K
V = 1115.8 (8) Å3Plate, pale yellow
Z = 40.12 × 0.07 × 0.03 mm

Data collection

Bruker SMART APEX area-detector diffractometer1196 independent reflections
Radiation source: fine-focus sealed tube596 reflections with I > 2σ(I)
graphiteRint = 0.084
[var phi] and ω scansθmax = 26.0°, θmin = 1.6°
Absorption correction: multi-scan (SADABS; Bruker, 2002)h = −16→16
Tmin = 0.989, Tmax = 0.993k = −13→15
5534 measured reflectionsl = −7→8

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135H-atom parameters constrained
S = 1.00w = 1/[σ2(Fo2) + (0.0327P)2] where P = (Fo2 + 2Fc2)/3
1196 reflections(Δ/σ)max < 0.001
146 parametersΔρmax = 0.15 e Å3
1 restraintΔρmin = −0.14 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N10.0897 (3)0.2763 (3)0.8805 (10)0.0761 (13)
N20.1661 (3)0.3447 (3)0.8868 (7)0.0596 (11)
N30.2589 (3)0.3020 (3)0.8840 (7)0.0578 (10)
N40.3009 (3)0.0258 (3)0.8507 (8)0.0687 (13)
O10.3829 (3)−0.0715 (3)1.2273 (8)0.0842 (13)
H10.3311−0.03911.25700.126*
C10.1492 (4)0.4541 (4)0.8940 (10)0.0680 (14)
C20.0539 (5)0.4918 (4)0.9368 (10)0.084 (2)
H20.00060.44560.96190.101*
C30.0372 (6)0.5982 (5)0.9427 (11)0.103 (3)
H3−0.02740.62410.97180.123*
C40.1147 (7)0.6647 (5)0.9060 (11)0.113 (3)
H40.10350.73650.91390.136*
C50.2086 (6)0.6287 (4)0.8579 (11)0.107 (2)
H50.26050.67580.82740.128*
C60.2278 (5)0.5209 (4)0.8539 (9)0.0877 (19)
H60.29250.49540.82470.105*
C70.2401 (3)0.2000 (3)0.8766 (9)0.0602 (13)
C80.1364 (3)0.1845 (4)0.8733 (11)0.0720 (15)
H80.10410.11970.86690.086*
C90.3212 (4)0.1209 (4)0.8771 (10)0.0673 (14)
H90.38840.14140.89720.081*
C100.3852 (3)−0.0487 (4)0.8635 (14)0.0854 (19)
H10A0.4489−0.01120.87910.103*
H10B0.3888−0.08940.74080.103*
C110.3691 (4)−0.1209 (4)1.0410 (13)0.077 (2)
H11A0.3006−0.14911.03490.093*
H11B0.4163−0.17911.03080.093*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.066 (2)0.051 (2)0.111 (4)−0.004 (2)0.003 (4)0.007 (4)
N20.076 (3)0.046 (2)0.057 (3)−0.001 (2)0.002 (3)0.005 (3)
N30.071 (2)0.052 (2)0.051 (3)−0.0108 (19)−0.002 (3)0.001 (3)
N40.063 (2)0.054 (2)0.089 (4)0.005 (2)0.012 (3)0.009 (3)
O10.070 (3)0.066 (3)0.117 (4)0.0067 (19)−0.014 (2)−0.001 (3)
C10.100 (4)0.052 (3)0.053 (4)−0.004 (3)0.008 (4)−0.006 (4)
C20.105 (4)0.062 (4)0.086 (6)0.009 (3)0.001 (4)−0.005 (3)
C30.156 (7)0.061 (4)0.092 (6)0.023 (4)−0.005 (5)0.002 (4)
C40.207 (9)0.055 (4)0.077 (6)0.013 (5)0.013 (7)−0.010 (4)
C50.181 (8)0.057 (4)0.083 (6)−0.028 (4)0.043 (6)−0.011 (4)
C60.132 (5)0.056 (3)0.075 (5)−0.023 (3)0.020 (5)−0.004 (4)
C70.064 (3)0.050 (3)0.066 (4)−0.008 (2)−0.001 (4)0.013 (3)
C80.068 (3)0.047 (3)0.101 (5)0.000 (2)−0.012 (5)0.012 (4)
C90.063 (3)0.066 (3)0.073 (4)−0.007 (2)−0.004 (4)0.014 (5)
C100.069 (3)0.064 (3)0.124 (6)0.018 (3)0.017 (5)−0.011 (5)
C110.055 (3)0.045 (3)0.132 (7)0.012 (3)0.010 (4)0.007 (5)

Geometric parameters (Å, °)

N1—C81.324 (5)C4—C51.354 (8)
N1—N21.330 (5)C4—H40.9300
N2—N31.336 (5)C5—C61.400 (7)
N2—C11.415 (6)C5—H50.9300
N3—C71.327 (5)C6—H60.9300
N4—C91.255 (5)C7—C81.376 (6)
N4—C101.461 (5)C7—C91.468 (6)
O1—C111.403 (8)C8—H80.9300
O1—H10.8200C9—H90.9300
C1—C61.365 (7)C10—C111.514 (9)
C1—C21.371 (7)C10—H10A0.9700
C2—C31.377 (7)C10—H10B0.9700
C2—H20.9300C11—H11A0.9700
C3—C41.347 (9)C11—H11B0.9700
C3—H30.9300
C8—N1—N2103.5 (4)C1—C6—H6120.8
N1—N2—N3114.8 (3)C5—C6—H6120.8
N1—N2—C1122.1 (4)N3—C7—C8109.0 (4)
N3—N2—C1123.1 (4)N3—C7—C9122.7 (4)
C7—N3—N2103.4 (3)C8—C7—C9128.3 (4)
C9—N4—C10117.4 (4)N1—C8—C7109.3 (4)
C11—O1—H1109.5N1—C8—H8125.4
C6—C1—C2120.8 (5)C7—C8—H8125.4
C6—C1—N2119.5 (5)N4—C9—C7120.7 (4)
C2—C1—N2119.7 (5)N4—C9—H9119.6
C1—C2—C3119.8 (6)C7—C9—H9119.6
C1—C2—H2120.1N4—C10—C11109.7 (5)
C3—C2—H2120.1N4—C10—H10A109.7
C4—C3—C2119.8 (7)C11—C10—H10A109.7
C4—C3—H3120.1N4—C10—H10B109.7
C2—C3—H3120.1C11—C10—H10B109.7
C3—C4—C5121.1 (6)H10A—C10—H10B108.2
C3—C4—H4119.4O1—C11—C10113.5 (5)
C5—C4—H4119.4O1—C11—H11A108.9
C4—C5—C6120.1 (6)C10—C11—H11A108.9
C4—C5—H5119.9O1—C11—H11B108.9
C6—C5—H5119.9C10—C11—H11B108.9
C1—C6—C5118.3 (6)H11A—C11—H11B107.7
C8—N1—N2—N30.0 (8)C2—C1—C6—C50.1 (10)
C8—N1—N2—C1179.4 (6)N2—C1—C6—C5178.7 (6)
N1—N2—N3—C7−0.3 (7)C4—C5—C6—C11.8 (11)
C1—N2—N3—C7−179.8 (5)N2—N3—C7—C80.5 (7)
N1—N2—C1—C6−165.0 (6)N2—N3—C7—C9−178.2 (5)
N3—N2—C1—C614.4 (9)N2—N1—C8—C70.4 (8)
N1—N2—C1—C213.6 (10)N3—C7—C8—N1−0.6 (8)
N3—N2—C1—C2−166.9 (6)C9—C7—C8—N1178.0 (6)
C6—C1—C2—C3−1.0 (11)C10—N4—C9—C7−176.9 (6)
N2—C1—C2—C3−179.6 (6)N3—C7—C9—N4−173.2 (6)
C1—C2—C3—C40.1 (11)C8—C7—C9—N48.4 (11)
C2—C3—C4—C51.8 (12)C9—N4—C10—C11115.1 (7)
C3—C4—C5—C6−2.8 (12)N4—C10—C11—O1−71.2 (6)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1···N4i0.822.022.835 (6)173

Symmetry codes: (i) −x+1/2, y, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WN2313).

References

  • Ali, M. A., Mirza, A. H., Butcher, R. J., Tarafder, M. T. H., Keat, T. B. & Ali, A. M. (2002). J. Inorg. Biochem.92, 141–148. [PubMed]
  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Borisova, N. E., Reshetova, M. D. & Ustynyuk, Y. A. (2007). Chem. Rev.107, 46–79. [PubMed]
  • Bruker (2002). SADABS, SAINT and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Maheswari, P. U., Roy, S., Dulk, H., Barends, S., Wezel, G., Kozlevcar, B., Gamez, P. & Reedijk, J. (2006). J. Am. Chem. Soc.128, 710–711. [PubMed]
  • Nate, H., Sekine, Y., Oda, K., Aoe, K., Nakai, H., Wada, H., Takeda, M., Yabana, H. & Nagao, T. (1987). Chem. Pharm. Bull.35, 3253–3260. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Yogavel, M., Selvanayagam, S., Velmurugan, D., Shanmuga Sundara Raj, S., Fun, H.-K., Marappan, M. & Kandaswamy, M. (2003). Acta Cryst. E59, o83–o85.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography