PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 April 1; 65(Pt 4): m359.
Published online 2009 March 6. doi:  10.1107/S1600536809006928
PMCID: PMC2968792

Dichlorido-2κ2 Cl-{μ-6,6′-dimeth­oxy-2,2′-[propane-1,3-diylbis(nitrilo­methyl­idyne)]diphenolato-1κ4 O 1,N,N′,O 1′:2κ2 O 1,O 1′}copper(II)zinc(II)

Abstract

In the title compound, [CuZnCl2(C19H20N2O4)], the CuII ion exhibits a slightly distorted square-planar coordination geometry defined by two N atoms and two O atoms of the 6,6′-dimeth­oxy-2,2′-[propane-1,3-diylbis(nitrilo­methyl­idyne)]diphenolate Schiff base ligand. The ZnII ion is also four-coordinated by the two phenolate O atoms of the Schiff base ligand and by two cis-coordinated chloride anions.

Related literature

For the physical and chemical properties of heterometallic complexes, see: Ni et al. (2005 [triangle], 2007 [triangle]); Ward (2007 [triangle]) and for their roles in biological systems, see: Karlin (1993 [triangle]). For bond-length data, see: Korupoju et al. (2000 [triangle]); Gheorghe et al. (2006 [triangle]). For the restraints used in the refinement, see: Ng (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m359-scheme1.jpg

Experimental

Crystal data

  • [CuZnCl2(C19H20N2O4)]
  • M r = 540.18
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m359-efi1.jpg
  • a = 13.0181 (9) Å
  • b = 10.8503 (8) Å
  • c = 14.7758 (11) Å
  • V = 2087.1 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 2.45 mm−1
  • T = 298 K
  • 0.20 × 0.10 × 0.08 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003 [triangle]) T min = 0.744, T max = 0.828
  • 9818 measured reflections
  • 3486 independent reflections
  • 3084 reflections with I > 2σ(I)
  • R int = 0.025

Refinement

  • R[F 2 > 2σ(F 2)] = 0.029
  • wR(F 2) = 0.074
  • S = 1.07
  • 3486 reflections
  • 262 parameters
  • 13 restraints
  • H-atom parameters constrained
  • Δρmax = 0.63 e Å−3
  • Δρmin = −0.58 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1564 Friedel pairs
  • Flack parameter: 0.006 (15)

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT-Plus (Bruker, 2001 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXL97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: XP in SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: XP in SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809006928/hg2482sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809006928/hg2482Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Science Foundation of Shandong Provincial Education Department (J08LC11), China.

supplementary crystallographic information

Comment

Heterometallic complexes have been intensively focused on owing to their unique physical and chemical properties (Ward et al., 2007; Ni et al., 2005 and Ni et al. 2007). In addition, these compounds exist at the active sites of many metalloenzymes and play important roles in biological systems (Karlin, 1993). Whereas, it is necessary to further widen the system of heterometallic compounds. Herein, a new heterometallic dinuclear (CuIIZnII) compound has been obtained. Its structure is depicted in the Figure 1.

Compound I is a dinuclear neutral complex with a slightly distorted planar configuration. The CuII atom is coordinated by two nitrogen atoms and two oxygen atoms from L2- ligand forming a square-planar geometry. The coordination environment of each ZnII atom is in a distorted tetrahedral geometry composed of two oxygen atoms from L2- ligand and two chlorine atoms occupying the the other two positions. The dihedral angle of two aromatic rings is 26.90 (4)°. The CuII atom and ZnII atom are connected via two bridging phenoxo oxygen atoms of L2- ligand, The bond lengths of Cu—O, Cu—N, Zn—O and Zn—Cl are normal (Gheorghe et al. 2006 and Korupoju et al., 2000).

Experimental

The H2L ligand and complex CuL was synthesized according to the previous literature (Gheorghe et al. 2006). the synthesis method of the compound I was obtained by allowing a mixure of CuL (0.088 g, 0.2 mmol) and ZnCl2.2H2O(0.044 g, 0.2 mmol) to be stirred in the methanol solution at room temperature, cooled down to room temperature and then filtered. Suitable yellow needle-shaped crystals were obtained via slow evaporation of the filtrate at room temperature.

Refinement

All H-atoms bound to carbon were refined using a riding model with distance C—H = 0.93 Å, Uiso = 1.2Ueq (C) for aromatic atoms and C—H = 0.96 Å, Uiso = 1.5Ueq (C) for methyl atoms. and the 'isor' order is used to restrain the C10 atom with wARP as 0.005 (Ng, 2005).

Figures

Fig. 1.
A view of (I) with the unique atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level, all hydrogen atoms are ommited for clarity.

Crystal data

[CuZnCl2(C19H20N2O4)]F(000) = 1092
Mr = 540.18Dx = 1.719 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 4074 reflections
a = 13.0181 (9) Åθ = 2.5–26.1°
b = 10.8503 (8) ŵ = 2.45 mm1
c = 14.7758 (11) ÅT = 298 K
V = 2087.1 (3) Å3Needle, green
Z = 40.20 × 0.10 × 0.08 mm

Data collection

Bruker APEXII CCD area-detector diffractometer3486 independent reflections
Radiation source: fine-focus sealed tube3084 reflections with I > 2σ(I)
graphiteRint = 0.025
Detector resolution: 0 pixels mm-1θmax = 25.0°, θmin = 1.9°
[var phi] and ω scansh = −15→15
Absorption correction: multi-scan (SADABS; Sheldrick, 2003)k = −11→12
Tmin = 0.744, Tmax = 0.828l = −17→15
9818 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029H-atom parameters constrained
wR(F2) = 0.074w = 1/[σ2(Fo2) + (0.0389P)2 + 0.0971P] where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
3486 reflectionsΔρmax = 0.63 e Å3
262 parametersΔρmin = −0.58 e Å3
13 restraintsAbsolute structure: Flack (1983), 1564 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.006 (15)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Zn10.59914 (3)0.74035 (3)0.69902 (3)0.04337 (13)
Cu10.59183 (3)1.03456 (3)0.71028 (4)0.04411 (14)
Cl20.71295 (8)0.63787 (10)0.78281 (9)0.0590 (3)
Cl10.48653 (8)0.64556 (11)0.60882 (10)0.0653 (4)
O10.4768 (2)0.6796 (3)0.8322 (2)0.0607 (8)
O40.7243 (2)0.7042 (2)0.5679 (2)0.0531 (7)
O30.6649 (2)0.9031 (2)0.6508 (2)0.0468 (7)
C60.3763 (3)0.9888 (5)0.8239 (3)0.0537 (12)
N10.4874 (3)1.1465 (3)0.7582 (3)0.0596 (10)
O20.5262 (2)0.8915 (2)0.76318 (19)0.0442 (7)
C120.7778 (4)1.1331 (3)0.6360 (3)0.0486 (10)
H120.82301.19890.62940.058*
C150.9470 (4)0.9069 (4)0.5223 (3)0.0557 (11)
H151.01180.90540.49580.067*
C130.8147 (3)1.0147 (3)0.6042 (3)0.0421 (9)
C70.4389 (3)0.8850 (4)0.8080 (3)0.0445 (10)
C170.7914 (3)0.8007 (4)0.5642 (3)0.0439 (9)
C50.2819 (3)0.9734 (5)0.8696 (3)0.0650 (13)
H50.23991.04150.87930.078*
C180.7549 (3)0.9076 (3)0.6083 (3)0.0388 (8)
C10.4576 (4)0.5620 (4)0.8709 (5)0.0845 (18)
H1A0.51320.50740.85660.127*
H1B0.39470.52930.84690.127*
H1C0.45180.57000.93540.127*
C30.3144 (3)0.7587 (5)0.8888 (3)0.0633 (13)
H30.29430.68240.91130.076*
C160.8847 (3)0.8003 (4)0.5211 (3)0.0534 (11)
H160.90690.72980.49100.064*
C110.6734 (4)1.2928 (3)0.6876 (5)0.0794 (15)
H11A0.70121.31440.74650.095*
H11B0.71131.33920.64250.095*
C80.4053 (4)1.1105 (4)0.7987 (4)0.0592 (13)
H80.35861.17220.81350.071*
C190.7605 (4)0.5875 (4)0.5382 (4)0.0653 (13)
H19A0.70660.52760.54400.098*
H19B0.81810.56300.57470.098*
H19C0.78140.59300.47610.098*
C20.4077 (3)0.7705 (4)0.8442 (3)0.0506 (11)
N20.6914 (3)1.1585 (3)0.6717 (3)0.0499 (9)
C100.5740 (5)1.3279 (5)0.6847 (5)0.0981 (17)
H10A0.55041.31040.62370.118*
H10B0.57391.41680.69090.118*
C90.4950 (4)1.2824 (4)0.7450 (6)0.098 (3)
H9A0.42921.31140.72260.118*
H9B0.50561.31990.80380.118*
C40.2511 (4)0.8598 (5)0.8999 (3)0.0700 (14)
H40.18770.85080.92800.084*
C140.9123 (3)1.0109 (5)0.5619 (3)0.0509 (11)
H140.95301.08130.56150.061*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Zn10.0359 (2)0.0315 (2)0.0628 (3)0.00014 (17)0.0017 (2)−0.0053 (2)
Cu10.0362 (2)0.0294 (2)0.0667 (3)0.00258 (17)−0.0002 (3)−0.0082 (3)
Cl20.0442 (6)0.0572 (6)0.0758 (8)0.0039 (5)−0.0013 (5)0.0129 (6)
Cl10.0448 (6)0.0532 (7)0.0980 (9)0.0004 (5)−0.0096 (6)−0.0273 (6)
O10.0527 (18)0.0442 (17)0.085 (2)−0.0085 (14)0.0185 (16)−0.0066 (16)
O40.0498 (17)0.0346 (14)0.075 (2)0.0015 (13)0.0136 (15)−0.0052 (14)
O30.0392 (16)0.0337 (13)0.0674 (19)−0.0005 (11)0.0092 (14)−0.0024 (12)
C60.039 (2)0.065 (3)0.057 (3)0.009 (2)0.001 (2)−0.026 (2)
N10.042 (2)0.0386 (19)0.099 (3)0.0044 (15)−0.0035 (19)−0.0215 (18)
O20.0354 (15)0.0364 (15)0.0608 (18)0.0018 (11)0.0114 (13)−0.0094 (12)
C120.055 (3)0.035 (2)0.055 (2)−0.0055 (18)−0.009 (2)0.0120 (18)
C150.040 (2)0.073 (3)0.054 (3)0.002 (2)0.011 (2)0.007 (2)
C130.037 (2)0.043 (2)0.046 (2)0.0038 (17)−0.0034 (17)0.0089 (18)
C70.032 (2)0.052 (3)0.049 (2)0.0009 (17)0.0005 (18)−0.0173 (18)
C170.041 (2)0.045 (2)0.046 (2)0.0089 (18)0.0035 (18)0.0039 (18)
C50.044 (3)0.086 (4)0.064 (3)0.016 (3)0.008 (2)−0.031 (3)
C180.034 (2)0.042 (2)0.040 (2)0.0014 (17)−0.0036 (17)0.0060 (17)
C10.080 (4)0.046 (3)0.128 (5)−0.015 (3)0.030 (4)−0.007 (3)
C30.050 (3)0.084 (3)0.056 (3)−0.014 (2)0.016 (2)−0.019 (3)
C160.054 (3)0.058 (3)0.048 (3)0.006 (2)0.010 (2)0.000 (2)
C110.071 (3)0.0296 (19)0.138 (4)0.0002 (19)−0.006 (3)−0.009 (3)
C80.049 (3)0.053 (3)0.075 (3)0.017 (2)−0.009 (2)−0.031 (2)
C190.077 (3)0.044 (2)0.075 (3)0.002 (2)0.015 (3)−0.004 (2)
C20.040 (2)0.059 (3)0.052 (3)−0.0037 (19)0.0075 (19)−0.020 (2)
N20.0406 (18)0.0318 (15)0.077 (2)−0.0013 (14)−0.0081 (17)−0.0010 (16)
C100.102 (3)0.050 (2)0.142 (4)0.014 (2)−0.011 (3)−0.001 (3)
C90.058 (3)0.035 (2)0.201 (8)0.011 (2)0.000 (4)−0.031 (3)
C40.051 (3)0.097 (4)0.062 (3)−0.005 (3)0.021 (2)−0.022 (3)
C140.039 (2)0.060 (3)0.054 (3)−0.006 (2)0.0008 (19)0.018 (2)

Geometric parameters (Å, °)

Zn1—O32.088 (3)C7—C21.412 (6)
Zn1—O22.119 (2)C17—C161.371 (5)
Zn1—Cl22.2280 (12)C17—C181.413 (5)
Zn1—Cl12.2324 (12)C5—C41.371 (6)
Cu1—O31.926 (3)C5—H50.9300
Cu1—O21.936 (3)C1—H1A0.9600
Cu1—N21.953 (3)C1—H1B0.9600
Cu1—N11.956 (4)C1—H1C0.9600
O1—C21.347 (5)C3—C21.388 (6)
O1—C11.421 (6)C3—C41.381 (6)
O4—C171.364 (5)C3—H30.9300
O4—C191.421 (5)C16—H160.9300
O3—C181.330 (5)C11—C101.349 (7)
C6—C71.409 (6)C11—N21.495 (5)
C6—C51.412 (7)C11—H11A0.9700
C6—C81.423 (7)C11—H11B0.9700
N1—C81.286 (6)C8—H80.9300
N1—C91.490 (6)C19—H19A0.9600
O2—C71.318 (5)C19—H19B0.9600
C12—N21.272 (5)C19—H19C0.9600
C12—C131.450 (5)C10—C91.448 (9)
C12—H120.9300C10—H10A0.9700
C15—C141.350 (6)C10—H10B0.9700
C15—C161.413 (6)C9—H9A0.9700
C15—H150.9300C9—H9B0.9700
C13—C181.400 (5)C4—H40.9300
C13—C141.417 (6)C14—H140.9300
O3—Zn1—O271.43 (10)H1A—C1—H1B109.5
O3—Zn1—Cl2109.81 (8)O1—C1—H1C109.5
O2—Zn1—Cl2115.82 (9)H1A—C1—H1C109.5
O3—Zn1—Cl1117.09 (9)H1B—C1—H1C109.5
O2—Zn1—Cl1109.24 (8)C2—C3—C4120.3 (5)
Cl2—Zn1—Cl1122.58 (4)C2—C3—H3119.8
O3—Cu1—O278.97 (10)C4—C3—H3119.8
O3—Cu1—N292.81 (13)C17—C16—C15120.0 (4)
O2—Cu1—N2164.28 (13)C17—C16—H16120.0
O3—Cu1—N1165.52 (14)C15—C16—H16120.0
O2—Cu1—N192.58 (14)C10—C11—N2114.8 (4)
N2—Cu1—N198.00 (15)C10—C11—H11A108.6
C2—O1—C1119.1 (4)N2—C11—H11A108.6
C17—O4—C19117.3 (3)C10—C11—H11B108.6
C18—O3—Cu1128.6 (2)N2—C11—H11B108.6
C18—O3—Zn1123.6 (2)H11A—C11—H11B107.5
Cu1—O3—Zn1105.55 (12)N1—C8—C6128.6 (4)
C7—C6—C5119.2 (5)N1—C8—H8115.7
C7—C6—C8123.0 (4)C6—C8—H8115.7
C5—C6—C8117.7 (4)O4—C19—H19A109.5
C8—N1—C9114.7 (4)O4—C19—H19B109.5
C8—N1—Cu1123.9 (3)H19A—C19—H19B109.5
C9—N1—Cu1121.4 (3)O4—C19—H19C109.5
C7—O2—Cu1128.8 (2)H19A—C19—H19C109.5
C7—O2—Zn1124.7 (2)H19B—C19—H19C109.5
Cu1—O2—Zn1104.01 (11)O1—C2—C3125.5 (4)
N2—C12—C13128.2 (4)O1—C2—C7113.7 (3)
N2—C12—H12115.9C3—C2—C7120.8 (4)
C13—C12—H12115.9C12—N2—C11114.5 (4)
C14—C15—C16119.8 (4)C12—N2—Cu1123.9 (3)
C14—C15—H15120.1C11—N2—Cu1121.4 (3)
C16—C15—H15120.1C11—C10—C9124.4 (6)
C18—C13—C14119.6 (4)C11—C10—H10A106.2
C18—C13—C12122.5 (4)C9—C10—H10A106.2
C14—C13—C12117.7 (4)C11—C10—H10B106.2
O2—C7—C6122.6 (4)C9—C10—H10B106.2
O2—C7—C2119.1 (3)H10A—C10—H10B106.4
C6—C7—C2118.3 (4)C10—C9—N1117.7 (5)
O4—C17—C16125.7 (4)C10—C9—H9A107.9
O4—C17—C18113.3 (3)N1—C9—H9A107.9
C16—C17—C18121.0 (4)C10—C9—H9B107.9
C4—C5—C6121.1 (4)N1—C9—H9B107.9
C4—C5—H5119.4H9A—C9—H9B107.2
C6—C5—H5119.4C5—C4—C3120.0 (4)
O3—C18—C13122.7 (3)C5—C4—H4120.0
O3—C18—C17119.0 (3)C3—C4—H4120.0
C13—C18—C17118.3 (4)C15—C14—C13121.1 (4)
O1—C1—H1A109.5C15—C14—H14119.5
O1—C1—H1B109.5C13—C14—H14119.5

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2482).

References

  • Bruker (2001). SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2004). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Gheorghe, R., Cucos, P., Andruh, M., Costes, J. P., Donnadieu, B. & Shova, S. (2006). Chem. Eur. J.12, 187–203. [PubMed]
  • Karlin, K. D. (1993). Science, 261, 701–708. [PubMed]
  • Korupoju, S. R., Mangayarkarasi, N., Ameerunisha, S., Valente, E. J. & Zacharias, P. S. (2000). J. Chem. Soc. Dalton Trans. pp. 2845–2852.
  • Ng, S. W. (2005). Chin. J. Struct. Chem.24, 1425–1439.
  • Ni, Z. H., Kou, H. Z., Zhao, Y. H., Zheng, L., Wang, R. J., Cui, A. L. & Sato, O. (2005). Inorg. Chem.44, 2050–2059. [PubMed]
  • Ni, Z. H., Zhang, L. F., Tangoulis, V., Wernsdorfer, W., Cui, A. L., Sato, O. & Kou, H. Z. (2007). Inorg. Chem.46, 6029–6037. [PubMed]
  • Sheldrick, G. M. (2003). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Ward, M. D. (2007). Coord. Chem. Rev.251, 1663–1677.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography