PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 April 1; 65(Pt 4): o714–o715.
Published online 2009 March 6. doi:  10.1107/S1600536809007442
PMCID: PMC2968788

N-[(2-Hydr­oxy-1-naphthyl)(3-nitro­phenyl)meth­yl]acetamide

Abstract

The title compound, C19H16N2O4, is of inter­est as a precursor to biologically active substituted quinolines and related compounds. The dihedral angle between the naphthalene ring system and the benzene ring is 81.9 (1)°. The crystal structure is stabilized by N—H(...)O inter­molecular hydrogen bonds, linking the mol­ecules into pairs around a center of symmetry. The crystal structure is further stabilized by inter­molecular O—H(...)O hydrogen bonds, which link the mol­ecules into chains running along a axis. An intra­molecular C—H(...)O short contact is also present.

Related literature

For N-(substituted phen­yl)acetamides as precursors for the synthesis of hetrocyclic compounds, see: Wen et al. (2005 [triangle], 2006 [triangle]). For multicomponent reactions, see: Devi & Bhuyan (2004 [triangle]); Domling & Ugi (2000 [triangle]). For the properties and potential applications of amide-type compounds and their metal ion complexes, see: Saravanakumar et al. (2005 [triangle]); Yin et al. (2004 [triangle]). For related structures, see: Mosslemin et al. (2007 [triangle]); Zia-ur-Rehman et al. (2008 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]); Liu & Li (2004 [triangle]). For hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o714-scheme1.jpg

Experimental

Crystal data

  • C19H16N2O4
  • M r = 336.34
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o714-efi2.jpg
  • a = 7.5261 (4) Å
  • b = 8.8635 (5) Å
  • c = 13.3008 (7) Å
  • α = 74.720 (3)°
  • β = 73.754 (3)°
  • γ = 82.600 (3)°
  • V = 820.27 (14) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 293 K
  • 0.4 × 0.2 × 0.1 mm

Data collection

  • Bruker Kappa APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2004 [triangle]) T min = 0.974, T max = 0.990
  • 9406 measured reflections
  • 3864 independent reflections
  • 2227 reflections with I > 2σ(I)
  • R int = 0.026

Refinement

  • R[F 2 > 2σ(F 2)] = 0.046
  • wR(F 2) = 0.144
  • S = 0.99
  • 3864 reflections
  • 227 parameters
  • H-atom parameters constrained
  • Δρmax = 0.21 e Å−3
  • Δρmin = −0.17 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: APEX2 and SAINT (Bruker, 2004 [triangle]); data reduction: SAINT and XPREP (Bruker, 2004 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009)’.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809007442/jh2076sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809007442/jh2076Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Dr Babu Vargheese, SAIF, IIT, Madras, India, for his help with collecting the X-ray intensity data. MNM and ASP thank Dr J. Jothi Kumar, Principal of Presidency College, Chennai, India, for providing the computer and internet facilities.

supplementary crystallographic information

Comment

N-(substituted phenyl)acetamides are well known for their importance as intermediates in organic synthesis. They are used as precursors for the synthesis of many hetrocyclic compounds (Wen et al., 2005, 2006). Multi-component reactions (MCRs) have attracted considerable attention in terms of the saving of both energy and raw materials (Devi & Bhuyan, 2004). They have merits over multi-step reactions in several aspects, including the simplicity of a one-pot procedure, possible structural variations and in building up complex molecules (Domling & Ugi, 2000). Much attention has been focused on amide-type compounds and their metal ion complexes for their properties and potential applications including molecular recognition, ion electrodes, photochemistry and topological structures in ion extraction, biochemistry, catalysis and magnetism (Saravanakumar et al., 2005; Yin et al., 2004). The amide linkage [–NHC(O)-] is known to be strong enough to form and maintain protein architectures and has been utilized to create various molecular devices for a spectrum of purposes in organic chemistry. In order to obtain fundamental information about this phenomenon, an X-ray crystal structure analysis of (I) was undertaken.

The conformation of (I), together with the atom-numbering scheme, is shown in Fig. 1. In the structure, all bond lengths and angles are within normal ranges (Allen et al., 1987), and comparable with those in previously reported structure (Mosslemin et al., 2007). The bond distance of C18=O4 is 1.222 (2) Å, which is typical for double bonds (Liu & Li., 2004). The nitro group is slighty twisted out of the plane of the benzene ring, as indicated by O2—N2—C16—C15 and O3—N2—C16—C15 torsion angles of -162.9 (2) and 14.4 (3)°, respectively, and comparable with those in previously reported structure (Zia-ur-Rehman et al., 2008).

The naphthalene ring is planar, the maximum deviation from the least squares plane being -0.027 (1) Å for atom C7. Atom O1 deviating by 0.05 (1) Å from the least squares plane of the naphthalene ring. The dihedral angle between the naphthalene and benzene ring is 81.9 (1)°. The dihedral angle between the fused rings is 1.1 (1)°.

The crystal structure is stabilized by N—H···O intermolecular hydrogen bonds (Table 1, Fig 2.) that generate centrosymmetric hydrogenbonded dimers with a cyclic R22(16) ring system (Bernstein, et al., 1995). The crystal structure is further stabilized by intermolecular O—H···O hydrogen bonds link the molecules into chains running along a axis.

Experimental

A mixture of 3-nitrobenzaldehyde (10 mmol), β-naphthol (10 mmol) and iodine (0.4 mmol, 4 mol%) were mixed in acetonitrile (5 ml). To that suspension acetyl chloride (2.8 mmol, 0.2 ml) was added and the reaction mixture was stirred at room temperature for 3 h. After the completion of the reaction (as monitored by TLC), saturated sodium thiosulfate solution (5 ml) was added. The precipitated solid was filtered and dried. The dried sample was washed with diethyl ether (2 x 10 ml) and again dried. Single crystals of the title compound suitable for X-ray diffraction were obtained by slow evaporation of a solution in Ethanol.

Refinement

All H atoms were positioned geometrically, with N—H = 0.86 and C—H = 0.93, 0.98 and 0.96 Å aromatic, methylene and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C, N), where x = 1.5 for methyl H, and x = 1.2 for all other H atoms.

Figures

Fig. 1.
The molecular configuration and atom-numbering scheme for (I). Displacement ellipsoids are drawn at the 30% probability level.
Fig. 2.
Part of the crystal structure of (I), showing the R22(16) rings. For the sake of clarity, H atoms not participating in the hydrogen bonding have been omitted. Hydrogen bonding is shown as dashed lines. [Symmetry codes: (*) -x + 2, -y + 1, -z + 1]

Crystal data

C19H16N2O4Z = 2
Mr = 336.34F(000) = 352
Triclinic, P1Dx = 1.362 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.5261 (4) ÅCell parameters from 3864 reflections
b = 8.8635 (5) Åθ = 2.5–25°
c = 13.3008 (7) ŵ = 0.10 mm1
α = 74.720 (3)°T = 293 K
β = 73.754 (3)°Needle, colourless
γ = 82.600 (3)°0.4 × 0.2 × 0.1 mm
V = 820.27 (14) Å3

Data collection

Bruker Kappa APEXII CCD diffractometer3864 independent reflections
Radiation source: fine-focus sealed tube2227 reflections with I > 2σ(I)
graphiteRint = 0.026
ω and [var phi] scanθmax = 28.4°, θmin = 2.6°
Absorption correction: multi-scan (SADABS; Bruker, 2004)h = −9→10
Tmin = 0.974, Tmax = 0.990k = −11→11
9406 measured reflectionsl = −17→17

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.144H-atom parameters constrained
S = 0.99w = 1/[σ2(Fo2) + (0.0612P)2 + 0.220P] where P = (Fo2 + 2Fc2)/3
3864 reflections(Δ/σ)max = 0.009
227 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = −0.17 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O11.11375 (16)0.78003 (16)0.26550 (11)0.0490 (4)
H11.22590.75870.25250.074*
O20.9758 (4)0.5649 (2)0.62604 (17)0.1025 (7)
O30.8781 (4)0.6954 (3)0.74538 (16)0.1150 (8)
O40.46636 (19)0.7392 (2)0.26984 (17)0.0801 (6)
N10.74868 (19)0.71417 (18)0.29573 (12)0.0401 (4)
H1A0.84430.65280.30450.048*
N20.8965 (3)0.6794 (3)0.65559 (16)0.0667 (5)
C11.0777 (2)0.9135 (2)0.19395 (14)0.0385 (4)
C21.2195 (2)0.9945 (3)0.11175 (16)0.0502 (5)
H21.34250.95750.10560.060*
C31.1769 (3)1.1262 (3)0.04174 (17)0.0536 (5)
H31.27201.1793−0.01170.064*
C40.9922 (3)1.1848 (2)0.04788 (15)0.0473 (5)
C50.9457 (4)1.3208 (3)−0.02594 (17)0.0632 (6)
H51.04021.3758−0.07860.076*
C60.7679 (4)1.3729 (3)−0.0220 (2)0.0732 (7)
H60.74081.4619−0.07210.088*
C70.6253 (4)1.2929 (3)0.05736 (19)0.0634 (6)
H70.50291.32850.05950.076*
C80.6626 (3)1.1628 (2)0.13215 (17)0.0495 (5)
H80.56491.11260.18520.059*
C90.8474 (2)1.1027 (2)0.13058 (14)0.0384 (4)
C100.8943 (2)0.9665 (2)0.20492 (14)0.0353 (4)
C110.7483 (2)0.8774 (2)0.29803 (14)0.0356 (4)
H110.62760.92640.28890.043*
C120.7637 (2)0.8970 (2)0.40573 (14)0.0366 (4)
C130.7214 (2)1.0446 (2)0.42690 (16)0.0448 (5)
H130.68651.12720.37510.054*
C140.7299 (3)1.0718 (3)0.52306 (17)0.0508 (5)
H140.69981.17150.53560.061*
C150.7827 (3)0.9515 (3)0.60021 (16)0.0500 (5)
H150.78800.96770.66560.060*
C160.8275 (3)0.8069 (2)0.57761 (15)0.0452 (5)
C170.8192 (2)0.7764 (2)0.48202 (14)0.0411 (4)
H170.85040.67660.46970.049*
C180.6061 (2)0.6567 (2)0.28056 (16)0.0457 (5)
C190.6235 (3)0.4876 (3)0.2787 (2)0.0719 (7)
H19A0.54500.42930.34380.108*
H19B0.74990.44830.27340.108*
H19C0.58660.47640.21760.108*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0284 (6)0.0571 (9)0.0628 (9)0.0062 (6)−0.0192 (6)−0.0126 (7)
O20.163 (2)0.0682 (13)0.0971 (15)0.0310 (13)−0.0825 (15)−0.0215 (12)
O30.189 (3)0.1062 (17)0.0557 (12)0.0012 (16)−0.0525 (14)−0.0122 (11)
O40.0403 (8)0.0771 (12)0.1474 (17)0.0087 (8)−0.0497 (10)−0.0471 (12)
N10.0309 (7)0.0380 (9)0.0574 (9)0.0045 (6)−0.0211 (7)−0.0146 (7)
N20.0861 (14)0.0639 (14)0.0559 (12)−0.0130 (11)−0.0321 (10)−0.0056 (11)
C10.0318 (8)0.0457 (11)0.0440 (10)0.0000 (8)−0.0138 (7)−0.0177 (9)
C20.0313 (9)0.0701 (14)0.0556 (12)−0.0066 (9)−0.0079 (8)−0.0277 (11)
C30.0516 (12)0.0623 (14)0.0462 (11)−0.0172 (10)−0.0023 (9)−0.0161 (11)
C40.0581 (12)0.0454 (12)0.0416 (10)−0.0068 (9)−0.0100 (9)−0.0170 (9)
C50.0878 (18)0.0488 (13)0.0467 (12)−0.0081 (12)−0.0087 (12)−0.0080 (11)
C60.104 (2)0.0478 (14)0.0603 (15)0.0171 (14)−0.0250 (14)−0.0070 (12)
C70.0736 (15)0.0513 (13)0.0669 (15)0.0205 (12)−0.0295 (12)−0.0161 (12)
C80.0502 (11)0.0455 (12)0.0554 (12)0.0086 (9)−0.0204 (9)−0.0145 (10)
C90.0424 (9)0.0368 (10)0.0410 (10)0.0010 (8)−0.0135 (8)−0.0162 (8)
C100.0314 (8)0.0386 (10)0.0418 (10)−0.0003 (7)−0.0128 (7)−0.0165 (8)
C110.0268 (8)0.0343 (10)0.0496 (10)0.0039 (7)−0.0154 (7)−0.0131 (8)
C120.0238 (7)0.0404 (10)0.0462 (10)−0.0016 (7)−0.0079 (7)−0.0126 (8)
C130.0374 (9)0.0424 (11)0.0554 (12)0.0021 (8)−0.0107 (8)−0.0162 (9)
C140.0437 (10)0.0500 (12)0.0622 (13)−0.0030 (9)−0.0055 (9)−0.0280 (11)
C150.0436 (10)0.0636 (14)0.0466 (11)−0.0122 (10)−0.0046 (9)−0.0229 (11)
C160.0413 (10)0.0504 (12)0.0440 (11)−0.0097 (9)−0.0106 (8)−0.0084 (9)
C170.0389 (9)0.0405 (11)0.0468 (11)−0.0037 (8)−0.0121 (8)−0.0133 (9)
C180.0350 (9)0.0511 (12)0.0568 (12)−0.0047 (8)−0.0161 (8)−0.0175 (10)
C190.0677 (15)0.0586 (15)0.103 (2)−0.0135 (12)−0.0270 (14)−0.0323 (15)

Geometric parameters (Å, °)

O1—C11.359 (2)C7—H70.9300
O1—H10.8200C8—C91.420 (3)
O2—N21.209 (3)C8—H80.9300
O3—N21.207 (3)C9—C101.420 (2)
O4—C181.222 (2)C10—C111.520 (2)
N1—C181.329 (2)C11—C121.525 (2)
N1—C111.455 (2)C11—H110.9800
N1—H1A0.8600C12—C171.378 (2)
N2—C161.468 (3)C12—C131.389 (3)
C1—C101.380 (2)C13—C141.382 (3)
C1—C21.407 (3)C13—H130.9300
C2—C31.353 (3)C14—C151.375 (3)
C2—H20.9300C14—H140.9300
C3—C41.408 (3)C15—C161.372 (3)
C3—H30.9300C15—H150.9300
C4—C51.414 (3)C16—C171.387 (3)
C4—C91.428 (3)C17—H170.9300
C5—C61.349 (3)C18—O41.222 (2)
C5—H50.9300C18—C191.494 (3)
C6—C71.391 (4)C19—H19A0.9600
C6—H60.9300C19—H19B0.9600
C7—C81.366 (3)C19—H19C0.9600
C1—O1—H1109.5C9—C10—C11121.98 (14)
C18—N1—C11122.19 (15)N1—C11—C10112.60 (14)
C18—N1—H1A118.9N1—C11—C12112.92 (14)
C11—N1—H1A118.9C10—C11—C12111.04 (13)
O3—N2—O2122.6 (2)N1—C11—H11106.6
O3—N2—C16118.8 (2)C10—C11—H11106.6
O2—N2—C16118.6 (2)C12—C11—H11106.6
O1—C1—C10116.89 (16)C17—C12—C13118.70 (17)
O1—C1—C2122.07 (15)C17—C12—C11123.28 (16)
C10—C1—C2121.03 (17)C13—C12—C11118.02 (16)
C3—C2—C1120.01 (18)C14—C13—C12121.61 (19)
C3—C2—H2120.0C14—C13—H13119.2
C1—C2—H2120.0C12—C13—H13119.2
C2—C3—C4121.59 (19)C15—C14—C13120.02 (19)
C2—C3—H3119.2C15—C14—H14120.0
C4—C3—H3119.2C13—C14—H14120.0
C3—C4—C5122.1 (2)C16—C15—C14117.86 (18)
C3—C4—C9118.75 (18)C16—C15—H15121.1
C5—C4—C9119.13 (19)C14—C15—H15121.1
C6—C5—C4121.8 (2)C15—C16—C17123.22 (19)
C6—C5—H5119.1C15—C16—N2118.79 (18)
C4—C5—H5119.1C17—C16—N2117.91 (19)
C5—C6—C7119.7 (2)C12—C17—C16118.56 (18)
C5—C6—H6120.2C12—C17—H17120.7
C7—C6—H6120.2C16—C17—H17120.7
C8—C7—C6121.0 (2)O4—C18—N1120.94 (18)
C8—C7—H7119.5O4—C18—N1120.94 (18)
C6—C7—H7119.5O4—C18—C19121.76 (18)
C7—C8—C9121.4 (2)O4—C18—C19121.76 (18)
C7—C8—H8119.3N1—C18—C19117.29 (17)
C9—C8—H8119.3C18—C19—H19A109.5
C10—C9—C8123.85 (17)C18—C19—H19B109.5
C10—C9—C4119.07 (16)H19A—C19—H19B109.5
C8—C9—C4117.07 (17)C18—C19—H19C109.5
C1—C10—C9119.52 (16)H19A—C19—H19C109.5
C1—C10—C11118.50 (15)H19B—C19—H19C109.5
O1—C1—C2—C3179.40 (18)C1—C10—C11—N1−58.74 (19)
C10—C1—C2—C3−0.2 (3)C9—C10—C11—N1122.18 (17)
C1—C2—C3—C4−0.7 (3)C1—C10—C11—C1269.00 (19)
C2—C3—C4—C5−178.9 (2)C9—C10—C11—C12−110.08 (17)
C2—C3—C4—C90.3 (3)N1—C11—C12—C1715.6 (2)
C3—C4—C5—C6177.5 (2)C10—C11—C12—C17−111.95 (18)
C9—C4—C5—C6−1.7 (3)N1—C11—C12—C13−165.13 (14)
C4—C5—C6—C70.9 (4)C10—C11—C12—C1367.30 (18)
C5—C6—C7—C80.6 (4)C17—C12—C13—C14−1.4 (3)
C6—C7—C8—C9−1.2 (3)C11—C12—C13—C14179.28 (16)
C7—C8—C9—C10−178.80 (19)C12—C13—C14—C150.6 (3)
C7—C8—C9—C40.4 (3)C13—C14—C15—C160.6 (3)
C3—C4—C9—C101.0 (3)C14—C15—C16—C17−1.0 (3)
C5—C4—C9—C10−179.76 (18)C14—C15—C16—N2175.85 (18)
C3—C4—C9—C8−178.19 (18)O3—N2—C16—C1514.4 (3)
C5—C4—C9—C81.0 (3)O2—N2—C16—C15−162.9 (2)
O1—C1—C10—C9−178.11 (15)O3—N2—C16—C17−168.6 (2)
C2—C1—C10—C91.5 (3)O2—N2—C16—C1714.1 (3)
O1—C1—C10—C112.8 (2)C13—C12—C17—C161.1 (2)
C2—C1—C10—C11−177.60 (16)C11—C12—C17—C16−179.69 (16)
C8—C9—C10—C1177.26 (17)C15—C16—C17—C120.1 (3)
C4—C9—C10—C1−1.9 (2)N2—C16—C17—C12−176.74 (16)
C8—C9—C10—C11−3.7 (3)C11—N1—C18—O4−1.4 (3)
C4—C9—C10—C11177.17 (16)C11—N1—C18—O4−1.4 (3)
C18—N1—C11—C10−114.89 (18)C11—N1—C18—C19179.39 (19)
C18—N1—C11—C12118.37 (18)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1···O4i0.821.872.646 (2)158
N1—H1A···O2ii0.862.353.167 (2)160
C11—H11···O40.982.282.739 (2)107

Symmetry codes: (i) x+1, y, z; (ii) −x+2, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JH2076).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2004). APEX2, SAINT, XPREP and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Devi, I. & Bhuyan, P. J. (2004). Tetrahedron Lett.45, 8625–8627.
  • Domling, A. & Ugi, I. (2000). Angew. Chem. Int. Ed.39, 3168–3210. [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Liu, W.-Y. & Li, Y.-Z. (2004). Acta Cryst. E60, o694–o695.
  • Mosslemin, M. H., Arab-Salmanabadi, S. & Masoudi, M. (2007). Acta Cryst. E63, o444–o445.
  • Saravanakumar, D., Sengottuvelan, N. & Kandaswamy, M. (2005). Inorg. Chem. Commun.8, 386–389.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst D65, 148–155. [PMC free article] [PubMed]
  • Wen, Y.-H., Li, X.-M., Xu, L.-L., Tang, X.-F. & Zhang, S.-S. (2006). Acta Cryst. E62, o4427–o4428.
  • Wen, Y.-H., Zhang, S.-S., Yu, B.-H., Li, X.-M. & Liu, Q. (2005). Acta Cryst. E61, o347–o348.
  • Yin, Z., Yang, Z., He, J. & Cheng, J. P. (2004). Tetrahedron Lett.45, 6803–6806.
  • Zia-ur-Rehman, M., Akbar, N., Arshad, M. N. & Khan, I. U. (2008). Acta Cryst. E64, o2092. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography