PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 April 1; 65(Pt 4): m420.
Published online 2009 March 19. doi:  10.1107/S1600536809009453
PMCID: PMC2968780

Bis[bis­(1-oxo-2-pyrid­yl)­aminato]­copper(II) tetra­hydrate

Abstract

In the title compound, [Cu(C10H8N3O2)2]·4H2O, the CuII ion has a distorted octa­hedral coordination formed by four O [Cu—O = 2.051 (3)–2.083 (4) Å] and two N [Cu—N = 1.985 (4) and 1.996 (4) Å] atoms from two tridentate bis­(1-oxo-2-pyrid­yl)aminate ligands. In the two ligands, the pyridyl rings form dihedral angles of 21.0 (1) and 15.5 (1)°. The crystal packing exhibits an extensive network of O—H(...)O hydrogen bonds and π–π inter­actions proved by short distances of 3.650 (1) and 3.732 (2) Å between the centroids of pyridyl rings of neighbouring mol­ecules.

Related literature

For general background, see Patra et al. (2004 [triangle]). For the crystal structures of related compounds, see: Kuang et al. (2006 [triangle]); Liu et al. (2007 [triangle], 2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m420-scheme1.jpg

Experimental

Crystal data

  • [Cu(C10H8N3O2)2]·4H2O
  • M r = 539.99
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m420-efi1.jpg
  • a = 10.697 (3) Å
  • b = 17.607 (5) Å
  • c = 15.052 (3) Å
  • β = 127.136 (14)°
  • V = 2260.0 (10) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.03 mm−1
  • T = 298 K
  • 0.29 × 0.22 × 0.18 mm

Data collection

  • Bruker APEXII area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2004 [triangle]) T min = 0.755, T max = 0.837
  • 11476 measured reflections
  • 4095 independent reflections
  • 1752 reflections with I > 2σ(I)
  • R int = 0.076

Refinement

  • R[F 2 > 2σ(F 2)] = 0.054
  • wR(F 2) = 0.159
  • S = 0.85
  • 4095 reflections
  • 340 parameters
  • 12 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.60 e Å−3
  • Δρmin = −0.46 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996 [triangle]) and ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809009453/cv2529sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809009453/cv2529Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The author is grateful to the Research Foundation of Lishui University (grant No. KZ08005) for financial support.

supplementary crystallographic information

Comment

Bis(amidopyridine) ligands have been widely explored in coordination chemistry for building various novel structural architectures and functional solid materials. Besides their diverse coordination modes, amide groups of ligands have proved to be useful in self-assembly, since they give predictable patterns of hydrogen bonding that can add extra dimensionality and helicity to the supramolecular structures (Patra et al., 2004). The modified bis(1-oxo-2-pyridyl)aminato ligand and its complexes have been recently reported (Liu et al., 2007). In this paper, we report the synthesis and crystal structure of the title compound, (I).

The CuII atom in (I) (Fig.1) has a distorted octahedral coordination formed by two central N atoms and four O atoms of N-oxide groups from two bis(1-oxo-2-pyridyl)aminato ligands. This structure is very similar with [CuL2].CH3OH compound (Kuang et al., 2006). The average Cu—O bond length of 2.062 Å is close to the values observed in related complexes (Liu et al., 2008).

The crystal packing exhibits π–π interactions (Table 1) and an extensive network of O—H···O hydrogen bonds (Table 2).

Experimental

Bis(1-oxo-2-pyridyl)aminato (0.062 g, 0.28 mmol), CuCl2 (0.024 g, 0.13 mmol), were added distilled water(12 mL), the mixture was heated for three hours under reflux. during the process stirring and influx were required. The resultant was kept at room temperature, three days later some single crystals of the size suitable for X-Ray diffraction measurement.

Refinement

All H atoms attached to C atoms and N atom were fixed geometrically and treated as riding with C—H = 0.93 Å (benze ring) with Uiso(H) = 1.2Ueq(C or N). H atoms of the water molecules were located in difference Fourier maps and included in the subsequent refinement using restraints (O—H = 0.85 (4) Å and H···H = 1.42 (4) Å), and treated as riding with Uiso(H) = 1.5Ueq(O).

Figures

Fig. 1.
View of (I) showing the atom-labelling scheme and 30% probability displacement ellipsoids.

Crystal data

[Cu(C10H8N3O2)2]·4H2OF(000) = 1116
Mr = 539.99Dx = 1.587 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1752 reflections
a = 10.697 (3) Åθ = 2.1–25.3°
b = 17.607 (5) ŵ = 1.03 mm1
c = 15.052 (3) ÅT = 298 K
β = 127.136 (14)°Block, blue
V = 2260.0 (10) Å30.29 × 0.22 × 0.18 mm
Z = 4

Data collection

Bruker APEXII area-detector diffractometer4095 independent reflections
Radiation source: fine-focus sealed tube1752 reflections with I > 2σ(I)
graphiteRint = 0.076
[var phi] and ω scansθmax = 25.3°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Bruker, 2004)h = −10→12
Tmin = 0.755, Tmax = 0.837k = −21→16
11476 measured reflectionsl = −18→17

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.159H atoms treated by a mixture of independent and constrained refinement
S = 0.85w = 1/[σ2(Fo2) + (0.08P)2 + 0.2094P] where P = (Fo2 + 2Fc2)/3
4095 reflections(Δ/σ)max < 0.001
340 parametersΔρmax = 0.60 e Å3
12 restraintsΔρmin = −0.46 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu10.41065 (8)0.62055 (4)0.65999 (6)0.0480 (3)
O40.5914 (4)0.6883 (2)0.6952 (3)0.0476 (10)
O30.2092 (4)0.5560 (2)0.5640 (3)0.0466 (10)
O20.5541 (4)0.5283 (2)0.7419 (3)0.0511 (10)
O10.2746 (4)0.7147 (2)0.6342 (3)0.0506 (10)
N50.3971 (5)0.6065 (2)0.5228 (3)0.0366 (11)
N60.6029 (5)0.6880 (2)0.6100 (4)0.0407 (11)
N40.1976 (4)0.5258 (2)0.4770 (3)0.0355 (10)
N20.4349 (5)0.6242 (3)0.8015 (3)0.0395 (11)
C180.6318 (6)0.6939 (4)0.4418 (5)0.0567 (17)
H180.64090.69570.38410.068*
N30.6122 (5)0.5311 (3)0.8499 (4)0.0471 (12)
N10.2569 (5)0.7195 (3)0.7140 (4)0.0481 (13)
C150.2965 (5)0.5512 (3)0.4521 (4)0.0369 (13)
C160.5016 (6)0.6442 (3)0.5173 (4)0.0366 (14)
C140.2811 (6)0.5125 (3)0.3655 (4)0.0423 (14)
H140.34880.52460.34830.051*
C60.5502 (6)0.5803 (3)0.8852 (5)0.0435 (14)
C200.7135 (6)0.7326 (3)0.6203 (5)0.0463 (15)
H200.77880.76160.68440.056*
C50.3413 (6)0.6719 (3)0.8065 (5)0.0457 (15)
C110.0881 (6)0.4723 (3)0.4162 (5)0.0448 (14)
H110.02140.45870.43380.054*
C120.0727 (6)0.4377 (3)0.3297 (5)0.0499 (15)
H12−0.00390.40100.28770.060*
C170.5199 (6)0.6495 (3)0.4335 (5)0.0497 (16)
H170.45280.62160.36860.060*
C40.3090 (7)0.6789 (4)0.8835 (5)0.0543 (17)
H40.35790.64630.94430.065*
C20.1304 (7)0.7794 (4)0.7821 (6)0.065 (2)
H20.06160.81580.77450.078*
C30.2077 (7)0.7324 (4)0.8717 (6)0.0638 (19)
H30.19140.73670.92570.077*
C130.1727 (7)0.4582 (4)0.3055 (5)0.0541 (16)
H130.16560.43450.24730.065*
C190.7303 (7)0.7357 (4)0.5374 (5)0.0594 (18)
H190.80800.76590.54550.071*
C10.1547 (6)0.7728 (3)0.7021 (5)0.0592 (18)
H10.10160.80450.64010.071*
C100.7378 (7)0.4870 (4)0.9224 (6)0.0613 (18)
H100.77910.45680.89510.074*
C90.8059 (8)0.4848 (4)1.0328 (6)0.074 (2)
H90.89170.45371.08110.089*
C80.7422 (8)0.5307 (4)1.0702 (6)0.075 (2)
H80.78400.52941.14520.091*
C70.6194 (7)0.5779 (4)0.9999 (5)0.0548 (16)
H70.58070.60911.02810.066*
O1W0.9650 (6)0.6775 (3)0.4134 (4)0.0916 (16)
O2W0.2615 (5)0.4326 (3)0.7051 (4)0.0789 (14)
O3W0.4779 (6)0.8374 (3)0.6629 (5)0.0815 (14)
O4W0.8955 (6)0.8330 (4)0.4159 (4)0.0934 (16)
H2WA0.354 (4)0.415 (4)0.744 (6)0.140*
H2WB0.250 (7)0.472 (3)0.669 (6)0.140*
H3WB0.384 (4)0.847 (4)0.638 (7)0.140*
H1WA1.029 (7)0.684 (4)0.4837 (14)0.140*
H1WB0.911 (8)0.637 (3)0.398 (6)0.140*
H4WB0.7981 (17)0.832 (5)0.365 (4)0.140*
H4WA0.952 (6)0.817 (5)0.398 (6)0.140*
H3WA0.499 (8)0.7903 (12)0.676 (7)0.140*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.0496 (4)0.0564 (5)0.0427 (5)−0.0004 (4)0.0303 (4)−0.0027 (4)
O40.050 (2)0.056 (3)0.039 (2)−0.010 (2)0.0277 (19)−0.005 (2)
O30.051 (2)0.054 (3)0.043 (2)−0.0071 (19)0.034 (2)−0.011 (2)
O20.061 (2)0.064 (3)0.038 (2)0.012 (2)0.035 (2)0.002 (2)
O10.056 (2)0.060 (3)0.040 (2)0.010 (2)0.032 (2)0.002 (2)
N50.034 (2)0.042 (3)0.035 (3)0.001 (2)0.022 (2)−0.001 (2)
N60.039 (3)0.044 (3)0.037 (3)−0.001 (2)0.022 (2)0.004 (2)
N40.032 (2)0.040 (3)0.037 (3)−0.001 (2)0.022 (2)−0.002 (2)
N20.044 (3)0.047 (3)0.034 (3)0.004 (2)0.027 (2)−0.004 (2)
C180.046 (3)0.081 (5)0.048 (4)0.004 (4)0.031 (3)0.013 (4)
N30.053 (3)0.048 (3)0.044 (3)0.000 (3)0.031 (3)0.002 (3)
N10.037 (3)0.062 (4)0.041 (3)−0.005 (3)0.022 (2)−0.017 (3)
C150.032 (3)0.053 (4)0.026 (3)0.011 (3)0.018 (3)0.005 (3)
C160.029 (3)0.053 (4)0.026 (3)0.004 (3)0.016 (3)0.003 (3)
C140.040 (3)0.056 (4)0.037 (3)0.010 (3)0.026 (3)0.007 (3)
C60.052 (3)0.051 (4)0.040 (4)−0.005 (3)0.035 (3)−0.002 (3)
C200.038 (3)0.050 (4)0.044 (4)−0.008 (3)0.021 (3)0.001 (3)
C50.043 (3)0.057 (4)0.032 (3)−0.012 (3)0.020 (3)−0.009 (3)
C110.041 (3)0.047 (4)0.050 (4)−0.001 (3)0.029 (3)0.001 (3)
C120.048 (3)0.045 (4)0.049 (4)−0.004 (3)0.025 (3)−0.010 (3)
C170.043 (3)0.067 (4)0.039 (4)−0.004 (3)0.024 (3)−0.003 (3)
C40.054 (4)0.075 (5)0.043 (4)−0.010 (4)0.034 (3)−0.014 (3)
C20.045 (4)0.080 (5)0.074 (5)−0.006 (4)0.037 (4)−0.037 (4)
C30.054 (4)0.094 (6)0.057 (5)−0.016 (4)0.041 (4)−0.025 (4)
C130.056 (4)0.058 (4)0.046 (4)0.009 (4)0.030 (3)0.000 (3)
C190.044 (4)0.070 (5)0.061 (5)−0.010 (3)0.030 (4)0.006 (4)
C10.039 (3)0.056 (4)0.064 (5)0.001 (3)0.021 (3)−0.015 (3)
C100.054 (4)0.061 (5)0.065 (5)0.009 (4)0.033 (4)0.009 (4)
C90.072 (4)0.091 (6)0.040 (4)0.011 (4)0.023 (4)0.010 (4)
C80.082 (5)0.081 (6)0.044 (4)−0.006 (5)0.028 (4)0.009 (4)
C70.064 (4)0.063 (4)0.041 (4)−0.003 (4)0.034 (3)0.001 (3)
O1W0.067 (3)0.069 (4)0.098 (4)−0.002 (3)0.029 (3)0.017 (3)
O2W0.087 (3)0.069 (4)0.082 (4)−0.004 (3)0.052 (3)0.009 (3)
O3W0.108 (4)0.066 (3)0.083 (4)−0.003 (3)0.064 (4)−0.002 (3)
O4W0.102 (4)0.097 (4)0.073 (4)0.001 (4)0.048 (3)0.003 (3)

Geometric parameters (Å, °)

Cu1—N21.985 (4)C20—H200.9300
Cu1—N51.996 (4)C5—C41.400 (7)
Cu1—O42.051 (3)C11—C121.355 (7)
Cu1—O22.056 (4)C11—H110.9300
Cu1—O32.064 (3)C12—C131.371 (7)
Cu1—O12.083 (4)C12—H120.9300
O4—N61.359 (5)C17—H170.9300
O3—N41.348 (5)C4—C31.364 (8)
O2—N31.347 (5)C4—H40.9300
O1—N11.327 (5)C2—C31.357 (9)
N5—C161.345 (6)C2—C11.382 (8)
N5—C151.363 (6)C2—H20.9300
N6—C201.350 (6)C3—H30.9300
N6—C161.374 (6)C13—H130.9300
N4—C111.342 (6)C19—H190.9300
N4—C151.393 (6)C1—H10.9300
N2—C51.343 (6)C10—C91.354 (8)
N2—C61.353 (7)C10—H100.9300
C18—C171.371 (7)C9—C81.378 (9)
C18—C191.376 (8)C9—H90.9300
C18—H180.9300C8—C71.363 (8)
N3—C101.352 (7)C8—H80.9300
N3—C61.377 (7)C7—H70.9300
N1—C11.368 (7)O1W—H1WA0.852 (10)
N1—C51.393 (7)O1W—H1WB0.86 (7)
C15—C141.390 (7)O2W—H2WA0.85 (7)
C16—C171.391 (7)O2W—H2WB0.84 (6)
C14—C131.345 (7)O3W—H3WB0.85 (8)
C14—H140.9300O3W—H3WA0.85 (3)
C6—C71.410 (7)O4W—H4WB0.85 (8)
C20—C191.366 (7)O4W—H4WA0.85 (8)
Cg1···Cg3i3.732 (2)Cg2···Cg3ii3.650 (1)
N2—Cu1—N5174.15 (18)N3—C6—C7115.7 (5)
N2—Cu1—O4102.22 (16)N6—C20—C19120.6 (5)
N5—Cu1—O478.90 (16)N6—C20—H20119.7
N2—Cu1—O279.40 (16)C19—C20—H20119.7
N5—Cu1—O294.82 (15)N2—C5—N1112.0 (5)
O4—Cu1—O293.35 (15)N2—C5—C4131.9 (6)
N2—Cu1—O3100.02 (15)N1—C5—C4116.1 (5)
N5—Cu1—O379.34 (15)N4—C11—C12121.4 (5)
O4—Cu1—O3157.50 (14)N4—C11—H11119.3
O2—Cu1—O394.08 (15)C12—C11—H11119.3
N2—Cu1—O178.36 (17)C11—C12—C13118.4 (5)
N5—Cu1—O1107.41 (15)C11—C12—H12120.8
O4—Cu1—O191.64 (15)C13—C12—H12120.8
O2—Cu1—O1157.76 (15)C18—C17—C16123.3 (5)
O3—Cu1—O189.47 (14)C18—C17—H17118.4
N6—O4—Cu1111.2 (3)C16—C17—H17118.4
N4—O3—Cu1110.0 (3)C3—C4—C5121.9 (6)
N3—O2—Cu1109.1 (3)C3—C4—H4119.1
N1—O1—Cu1110.3 (3)C5—C4—H4119.1
C16—N5—C15126.8 (4)C3—C2—C1119.5 (6)
C16—N5—Cu1117.3 (3)C3—C2—H2120.2
C15—N5—Cu1115.2 (3)C1—C2—H2120.2
C20—N6—O4117.4 (4)C2—C3—C4120.6 (6)
C20—N6—C16122.8 (5)C2—C3—H3119.7
O4—N6—C16119.8 (4)C4—C3—H3119.7
C11—N4—O3118.1 (4)C14—C13—C12120.1 (6)
C11—N4—C15122.3 (5)C14—C13—H13119.9
O3—N4—C15119.7 (4)C12—C13—H13119.9
C5—N2—C6126.6 (5)C20—C19—C18119.6 (6)
C5—N2—Cu1117.5 (4)C20—C19—H19120.2
C6—N2—Cu1115.8 (3)C18—C19—H19120.2
C17—C18—C19118.4 (6)N1—C1—C2120.0 (6)
C17—C18—H18120.8N1—C1—H1120.0
C19—C18—H18120.8C2—C1—H1120.0
O2—N3—C10117.5 (5)N3—C10—C9122.9 (6)
O2—N3—C6120.7 (5)N3—C10—H10118.6
C10—N3—C6121.7 (5)C9—C10—H10118.6
O1—N1—C1117.6 (5)C10—C9—C8117.0 (7)
O1—N1—C5120.5 (4)C10—C9—H9121.5
C1—N1—C5121.9 (5)C8—C9—H9121.5
N5—C15—C14132.4 (5)C7—C8—C9121.5 (6)
N5—C15—N4112.9 (4)C7—C8—H8119.2
C14—C15—N4114.5 (5)C9—C8—H8119.2
N5—C16—N6112.9 (4)C8—C7—C6121.1 (6)
N5—C16—C17131.8 (5)C8—C7—H7119.5
N6—C16—C17115.3 (5)C6—C7—H7119.5
C13—C14—C15123.1 (5)H1WA—O1W—H1WB111 (7)
C13—C14—H14118.5H2WA—O2W—H2WB114 (8)
C15—C14—H14118.5H3WB—O3W—H3WA112 (8)
N2—C6—N3112.4 (5)H4WB—O4W—H4WA115 (3)
N2—C6—C7131.8 (5)

Symmetry codes: (i) x, −y−1/2, z−3/2; (ii) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O2W—H2WA···O3Wiii0.85 (7)2.01 (7)2.800 (7)156 (6)
O3W—H3WA···O40.85 (3)1.99 (5)2.808 (6)163 (7)
O2W—H2WB···O30.84 (6)2.01 (6)2.848 (6)172 (8)
O1W—H1WA···O1iv0.85 (1)2.27 (4)3.025 (6)148 (7)
O1W—H1WB···O2Wii0.86 (7)1.96 (8)2.755 (7)153 (6)
O4W—H4WB···O4v0.84 (3)2.17 (3)2.951 (6)154 (6)

Symmetry codes: (iii) −x+1, y−1/2, −z+3/2; (iv) x+1, y, z; (ii) −x+1, −y+1, −z+1; (v) x, −y+3/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2529).

References

  • Bruker (2004). APEX2 and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Kuang, H.-M., Zeng, X.-R., Liu, Y.-Q., Luo, Q.-Y. & Fang, X.-N. (2006). Acta Cryst. E62, m1132–m1133.
  • Liu, J. Q., Wang, Y. Y., Ma, L. F., Zhang, W. H., Zeng, X. R., Shi, Q. Z. & Peng, S. M. (2008). Inorg. Chim. Acta, 361, 2327–2334.
  • Liu, Y. Q., Zeng, X. R., Liu, J. Q., Li, D. F. & Wen, H. R. (2007). Chin. J. Struct. Chem.26, 683–686.
  • Patra, A. K., Rose, M. J., Murphy, K. A., Olmstead, M. M. & Mascharak, P. K. (2004). Inorg. Chem.43, 4487–4495. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography