PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 March 1; 65(Pt 3): m310.
Published online 2009 February 21. doi:  10.1107/S160053680900542X
PMCID: PMC2968694

Poly[diaqua­(μ-oxalato)(μ-2-oxido­pyridinium-3-carboxyl­ato)praseo­dymium(III)]

Abstract

In the title complex, [Pr(C6H4NO3)(C2O4)(H2O)2]n, each PrIII ion is coordinated by eight O atoms from two 2-oxynicotinate ligands, two oxalate ligands and two water mol­ecules, displaying a distorted bicapped square-anti­prismatic geometry. The carboxyl­ate groups link adjacent praseodymium metal centres, forming layers parallel to the bc plane. The crystal packing is stabilized by inter­molecular O—H(...)O and N—H(...)O hydrogen bonds.

Related literature

For a general background on the mol­ecular self-assembly of supra­molecular architectures, see: Mou et al. (2008 [triangle]); Moulton & Zaworotko (2001 [triangle]); Zeng et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m310-scheme1.jpg

Experimental

Crystal data

  • [Pr(C6H4NO3)(C2O4)(H2O)2]
  • M r = 403.06
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m310-efi1.jpg
  • a = 7.5820 (19) Å
  • b = 8.643 (2) Å
  • c = 9.375 (4) Å
  • α = 108.992 (4)°
  • β = 103.925 (4)°
  • γ = 102.043 (3)°
  • V = 535.6 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 4.60 mm−1
  • T = 296 K
  • 0.19 × 0.17 × 0.16 mm

Data collection

  • Bruker APEXII area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.435, T max = 0.485
  • 2751 measured reflections
  • 1888 independent reflections
  • 1753 reflections with I > 2σ(I)
  • R int = 0.024

Refinement

  • R[F 2 > 2σ(F 2)] = 0.030
  • wR(F 2) = 0.080
  • S = 1.10
  • 1888 reflections
  • 187 parameters
  • 8 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 1.06 e Å−3
  • Δρmin = −1.66 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2004 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680900542X/rz2293sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680900542X/rz2293Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors gratefully acknowledge the financial support from the Emphasis Project sponsored by the Department of Education of Guangdong Province (No. [2007]129).

supplementary crystallographic information

Comment

Molecular self-assembly of supramolecular architectures has received much attention during recent decades (Zeng et al., 2007; Moulton & Zaworotko, 2001; Mou et al., 2008). The structures and properties of such systems depend on the coordination and geometric preferences of both the central metal ions and the bridging building blocks, as well as the influence of weaker non-covalent interactions, such as hydrogen bonds and π-π stacking interactions. Recently, we obtained the title coordination polymer, which was synthesized under hydrothermal conditions.

As illustrated in Fig. 1, in the structure of the title compound each PrIII centre is in a distorted bicapped square antiprismatic geometry, defined by eight oxygen atoms from two 2-oxynicotinate ligands, two oxalate ligands, and two water molecules The PrIII ions are linked by 2-oxynicotinate ligands and oxalate ligands to form layers parallel to the bc plane (Fig. 2), with separations between adjacent PrIII metal centres of 4.410 (4), 6.505 (5) and 6.551 (3) Å. Intermolecular O—H···O and N—H···O hydrogen bonding interactions (Table 1) involving the 2-oxynicotinate ligands, the oxalate ligands and the water molecules assemble neighboring layers to form a three-dimensional supramolecular network motif.

Experimental

A mixture of Pr2O3 (0.330 g; 1.0 mmol), 2-oxynicotinic acid (0.127 g; 1 mmol), oxalic acid(0.09 g; 1 mmol), water (10 ml) in the presence of HNO3 (0.024 g; 0.385 mmol) was stirred vigorously for 20 min and then sealed in a Teflon-lined stainless-steel autoclave (20 ml, capacity). The autoclave was heated and maintained at 443 K for 3 days. After cooling to room temperature at 5 K h-1, colourless block crystals of the title compound were obtained.

Refinement

Water H atoms were located in difference Fourier maps and were refined with distance restraints of O–H = 0.84 Å, H···H = 1.35 Å, and with Uiso(H) = 1.5 Ueq(O). The separation between symmetry related H4W atoms at (x, y, z) and (1 - x, 1 - y, 2 - z) was restrained to be 2.2 Å. Carbon-bound H atoms were placed at calculated positions and were treated as riding on the parent C atoms with C—H = 0.93 Å, and with Uiso(H) = 1.2 Ueq(C). The H atom bound to the N1 nitrogen atom was refined with a distance restraints of N–H = 0.86 Å and with Uiso(H) = 1.2 Ueq(N).

Figures

Fig. 1.
The molecular structure of the title compound showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Symmetry codes: (i) -x, 1 - y, 2 - z; (ii) -x, 1 - y, 1 - z; (iii) -x, 2 - y, 2 - z.
Fig. 2.
Crystal structure of the title compound viewed approximately along the a axis.

Crystal data

[Pr(C6H4NO3)(C2O4)(H2O)2]Z = 2
Mr = 403.06F(000) = 388
Triclinic, P1Dx = 2.499 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.5820 (19) ÅCell parameters from 2183 reflections
b = 8.643 (2) Åθ = 2.6–28.0°
c = 9.375 (4) ŵ = 4.60 mm1
α = 108.992 (4)°T = 296 K
β = 103.925 (4)°Block, colourless
γ = 102.043 (3)°0.19 × 0.17 × 0.16 mm
V = 535.6 (3) Å3

Data collection

Bruker APEXII area-detector diffractometer1888 independent reflections
Radiation source: fine-focus sealed tube1753 reflections with I > 2σ(I)
graphiteRint = 0.024
[var phi] and ω scansθmax = 25.2°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −9→8
Tmin = 0.435, Tmax = 0.485k = −6→10
2751 measured reflectionsl = −11→10

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.080H atoms treated by a mixture of independent and constrained refinement
S = 1.10w = 1/[σ2(Fo2) + (0.0483P)2 + 0.01P] where P = (Fo2 + 2Fc2)/3
1888 reflections(Δ/σ)max = 0.001
187 parametersΔρmax = 1.06 e Å3
8 restraintsΔρmin = −1.66 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Pr10.13688 (4)0.65736 (3)0.88899 (3)0.01199 (13)
O10.1360 (5)0.5899 (6)1.1378 (4)0.0209 (9)
O20.2431 (6)0.4573 (6)1.2882 (5)0.0292 (10)
O30.4163 (6)0.8435 (6)1.1280 (4)0.0255 (10)
O40.0792 (6)0.7141 (5)0.6359 (4)0.0210 (9)
O5−0.0653 (6)0.5985 (5)0.3701 (5)0.0240 (9)
O60.1917 (5)0.9740 (5)0.9339 (5)0.0211 (9)
O70.0683 (6)1.1925 (5)0.9755 (5)0.0221 (9)
N10.6714 (7)0.9795 (7)1.3550 (6)0.0213 (11)
H10.709 (9)1.056 (6)1.320 (7)0.026*
C10.2690 (8)0.5814 (8)1.2460 (6)0.0184 (12)
C20.4526 (7)0.7259 (7)1.3291 (6)0.0155 (11)
C30.5671 (8)0.7451 (8)1.4747 (7)0.0226 (13)
H30.53310.66331.51600.027*
C40.7339 (8)0.8845 (9)1.5629 (7)0.0268 (14)
H40.81060.89631.66200.032*
C50.7816 (8)1.0019 (8)1.5011 (7)0.0260 (14)
H50.89001.09781.55910.031*
C60.5042 (8)0.8480 (8)1.2612 (6)0.0176 (12)
C70.0043 (7)0.5910 (7)0.5025 (6)0.0169 (12)
C80.0756 (7)1.0482 (7)0.9731 (6)0.0132 (11)
O1W0.4579 (6)0.7364 (7)0.8300 (6)0.0344 (11)
H1W0.526 (8)0.825 (6)0.912 (6)0.052*
H2W0.532 (7)0.703 (9)0.781 (7)0.052*
O2W0.3042 (6)0.4283 (6)0.9073 (5)0.0256 (9)
H3W0.253 (9)0.355 (5)0.938 (6)0.038*
H4W0.362 (3)0.520 (3)0.987 (4)0.038*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Pr10.01204 (18)0.0123 (2)0.01350 (19)0.00367 (13)0.00302 (12)0.00841 (14)
O10.0147 (19)0.030 (3)0.0152 (19)0.0010 (18)−0.0001 (16)0.0128 (18)
O20.030 (2)0.023 (3)0.031 (2)−0.003 (2)0.0026 (19)0.019 (2)
O30.0211 (19)0.029 (3)0.019 (2)−0.0046 (18)−0.0042 (16)0.0153 (19)
O40.031 (2)0.015 (2)0.0137 (19)0.0041 (18)0.0044 (17)0.0060 (17)
O50.040 (2)0.016 (2)0.016 (2)0.0109 (19)0.0039 (18)0.0103 (18)
O60.0183 (19)0.019 (2)0.035 (2)0.0104 (18)0.0150 (17)0.0138 (19)
O70.027 (2)0.013 (2)0.036 (2)0.0079 (18)0.0173 (18)0.0158 (19)
N10.019 (2)0.019 (3)0.025 (3)0.002 (2)0.003 (2)0.012 (2)
C10.023 (3)0.019 (3)0.013 (3)0.006 (3)0.005 (2)0.006 (2)
C20.015 (2)0.018 (3)0.015 (3)0.004 (2)0.006 (2)0.008 (2)
C30.026 (3)0.028 (4)0.018 (3)0.009 (3)0.007 (2)0.016 (3)
C40.020 (3)0.035 (4)0.019 (3)0.005 (3)−0.003 (2)0.012 (3)
C50.015 (3)0.025 (4)0.029 (3)0.003 (3)0.001 (2)0.006 (3)
C60.019 (3)0.021 (3)0.015 (3)0.008 (2)0.008 (2)0.006 (2)
C70.017 (3)0.017 (3)0.019 (3)0.005 (2)0.005 (2)0.011 (2)
C80.014 (2)0.011 (3)0.013 (3)0.003 (2)0.000 (2)0.005 (2)
O1W0.025 (2)0.035 (3)0.034 (3)0.000 (2)0.0112 (19)0.007 (2)
O2W0.025 (2)0.030 (3)0.033 (2)0.015 (2)0.0120 (18)0.021 (2)

Geometric parameters (Å, °)

Pr1—O32.458 (4)O7—C81.253 (7)
Pr1—O42.532 (4)O7—Pr1i2.537 (4)
Pr1—O7i2.537 (4)N1—C51.350 (8)
Pr1—O5ii2.540 (4)N1—C61.372 (8)
Pr1—O1iii2.543 (4)N1—H10.86 (6)
Pr1—O62.555 (4)C1—C21.491 (8)
Pr1—O12.583 (4)C1—Pr1iii3.018 (6)
Pr1—O2W2.593 (4)C2—C31.367 (8)
Pr1—O1W2.626 (4)C2—C61.434 (8)
Pr1—O2iii2.734 (4)C3—C41.396 (8)
Pr1—C1iii3.018 (6)C3—H30.9300
Pr1—H4W2.44 (4)C4—C51.352 (9)
O1—C11.280 (7)C4—H40.9300
O1—Pr1iii2.543 (4)C5—H50.9300
O2—C11.253 (7)C7—C7ii1.546 (11)
O2—Pr1iii2.734 (4)C8—C8i1.555 (10)
O3—C61.251 (7)O1W—H1W0.84 (5)
O4—C71.248 (7)O1W—H2W0.84 (5)
O5—C71.255 (6)O2W—H3W0.84 (5)
O5—Pr1ii2.540 (4)O2W—H4W0.83 (3)
O6—C81.249 (6)
O3—Pr1—O4120.86 (13)O4—Pr1—H4W127.8 (11)
O3—Pr1—O7i88.47 (14)O7i—Pr1—H4W129.5 (10)
O4—Pr1—O7i102.37 (13)O5ii—Pr1—H4W81.2 (5)
O3—Pr1—O5ii137.09 (15)O1iii—Pr1—H4W88.8 (9)
O4—Pr1—O5ii63.36 (13)O6—Pr1—H4W129.1 (6)
O7i—Pr1—O5ii134.11 (14)O1—Pr1—H4W60.0 (11)
O3—Pr1—O1iii127.58 (12)O2W—Pr1—H4W18.7 (8)
O4—Pr1—O1iii111.40 (13)O1W—Pr1—H4W67.4 (11)
O7i—Pr1—O1iii76.36 (13)O2iii—Pr1—H4W134.2 (6)
O5ii—Pr1—O1iii70.57 (14)C1iii—Pr1—H4W111.2 (8)
O3—Pr1—O669.27 (14)C1—O1—Pr1iii98.8 (3)
O4—Pr1—O665.37 (13)C1—O1—Pr1131.9 (3)
O7i—Pr1—O663.08 (12)Pr1iii—O1—Pr1118.71 (14)
O5ii—Pr1—O6128.42 (12)C1—O2—Pr1iii90.5 (3)
O1iii—Pr1—O6136.28 (12)C6—O3—Pr1140.0 (4)
O3—Pr1—O166.31 (12)C7—O4—Pr1119.9 (3)
O4—Pr1—O1170.59 (12)C7—O5—Pr1ii120.3 (4)
O7i—Pr1—O170.75 (13)C8—O6—Pr1120.7 (3)
O5ii—Pr1—O1116.45 (13)C8—O7—Pr1i121.3 (3)
O1iii—Pr1—O161.29 (14)C5—N1—C6125.6 (5)
O6—Pr1—O1115.03 (13)C5—N1—H1116 (5)
O3—Pr1—O2W81.72 (14)C6—N1—H1118 (4)
O4—Pr1—O2W117.75 (13)O2—C1—O1120.7 (5)
O7i—Pr1—O2W137.99 (13)O2—C1—C2119.7 (5)
O5ii—Pr1—O2W63.32 (13)O1—C1—C2119.5 (5)
O1iii—Pr1—O2W77.80 (13)O2—C1—Pr1iii65.0 (3)
O6—Pr1—O2W144.55 (13)O1—C1—Pr1iii56.4 (3)
O1—Pr1—O2W67.88 (13)C2—C1—Pr1iii168.4 (4)
O3—Pr1—O1W65.67 (14)C3—C2—C6120.3 (5)
O4—Pr1—O1W69.36 (14)C3—C2—C1119.0 (5)
O7i—Pr1—O1W139.13 (15)C6—C2—C1120.6 (5)
O5ii—Pr1—O1W79.60 (14)C2—C3—C4121.5 (6)
O1iii—Pr1—O1W144.47 (15)C2—C3—H3119.2
O6—Pr1—O1W77.88 (14)C4—C3—H3119.2
O1—Pr1—O1W120.06 (14)C5—C4—C3118.5 (5)
O2W—Pr1—O1W71.70 (15)C5—C4—H4120.7
O3—Pr1—O2iii153.63 (15)C3—C4—H4120.7
O4—Pr1—O2iii67.95 (13)N1—C5—C4119.8 (6)
O7i—Pr1—O2iii65.16 (14)N1—C5—H5120.1
O5ii—Pr1—O2iii69.19 (14)C4—C5—H5120.1
O1iii—Pr1—O2iii49.16 (12)O3—C6—N1118.7 (5)
O6—Pr1—O2iii96.62 (13)O3—C6—C2127.0 (5)
O1—Pr1—O2iii102.91 (12)N1—C6—C2114.3 (5)
O2W—Pr1—O2iii117.69 (14)O4—C7—O5127.0 (5)
O1W—Pr1—O2iii135.00 (14)O4—C7—C7ii117.4 (6)
O3—Pr1—C1iii147.53 (14)O5—C7—C7ii115.7 (6)
O4—Pr1—C1iii88.65 (14)O6—C8—O7127.4 (5)
O7i—Pr1—C1iii70.79 (14)O6—C8—C8i116.4 (6)
O5ii—Pr1—C1iii65.76 (14)O7—C8—C8i116.2 (6)
O1iii—Pr1—C1iii24.77 (14)Pr1—O1W—H1W103 (4)
O6—Pr1—C1iii118.47 (14)Pr1—O1W—H2W148 (5)
O1—Pr1—C1iii83.03 (13)H1W—O1W—H2W107 (6)
O2W—Pr1—C1iii96.95 (15)Pr1—O2W—H3W116 (5)
O1W—Pr1—C1iii144.76 (15)Pr1—O2W—H4W70 (3)
O2iii—Pr1—C1iii24.54 (14)H3W—O2W—H4W108 (4)
O3—Pr1—H4W63.2 (7)

Symmetry codes: (i) −x, −y+2, −z+2; (ii) −x, −y+1, −z+1; (iii) −x, −y+1, −z+2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O2W—H4W···O30.83 (3)2.56 (2)3.306 (6)149 (4)
O2W—H3W···O7iv0.84 (5)1.95 (6)2.764 (6)164 (7)
O2W—H4W···O2Wv0.83 (3)2.37 (2)2.820 (8)114 (2)
O1W—H2W···O2v0.85 (6)2.49 (4)3.280 (7)157 (8)
O1W—H1W···O30.84 (5)2.34 (6)2.760 (6)111 (5)
O1W—H1W···O6vi0.84 (5)2.24 (3)3.002 (6)151 (6)
N1—H1···O4vi0.86 (6)2.12 (4)2.878 (7)146 (6)

Symmetry codes: (iv) x, y−1, z; (v) −x+1, −y+1, −z+2; (vi) −x+1, −y+2, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2293).

References

  • Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Mou, J.-X., Zeng, R.-H., Qiu, Y.-C., Zhang, W.-G., Deng, H. & Zeller, M. (2008). Inorg. Chem. Commun.11, 1347–1351.
  • Moulton, B. & Zaworotko, M. J. (2001). Chem. Rev.101, 1629–1658. [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Zeng, R.-H., Qiu, Y.-C., Cai, Y.-P., Wu, J.-Z. & Deng, H. (2007). Acta Cryst. E63, m1666.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography