PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 March 1; 65(Pt 3): o609.
Published online 2009 February 25. doi:  10.1107/S160053680900590X
PMCID: PMC2968690

2,4-Bis(4-chloro­phen­yl)-3-aza­bicyclo­[3.3.1]nonan-9-one

Abstract

In the mol­ecular structure of the title compound, C20H19Cl2NO, the mol­ecule exists in a twin-chair conformation with equatorial dispositions of the 4-chloro­phenyl groups on both sides of the secondary amino group; the dihedral angle between the aromatic ring planes is 31.33 (3)°. The crystal structure is stabilized by N—H(...)O inter­actions, leading to chains of molecules.

Related literature

For the biological activity of diterpenoid/norditerpenoid alkaloids, see: Hardick et al. (1996 [triangle]); Jeyaraman et al. (1981 [triangle]). For similiar structures, see: Parthiban et al. (2008a [triangle],b [triangle],c [triangle],d [triangle],e [triangle]). For puckering parameters, see: Cremer & Pople (1975 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o609-scheme1.jpg

Experimental

Crystal data

  • C20H19Cl2NO
  • M r = 360.26
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o609-efi1.jpg
  • a = 16.2589 (4) Å
  • b = 6.8983 (2) Å
  • c = 18.1291 (5) Å
  • β = 116.149 (1)°
  • V = 1825.23 (9) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.36 mm−1
  • T = 298 K
  • 0.42 × 0.38 × 0.25 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 1999 [triangle]) T min = 0.863, T max = 0.915
  • 15050 measured reflections
  • 4997 independent reflections
  • 3241 reflections with I > 2σ(I)
  • R int = 0.021

Refinement

  • R[F 2 > 2σ(F 2)] = 0.046
  • wR(F 2) = 0.135
  • S = 1.02
  • 4997 reflections
  • 221 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.38 e Å−3
  • Δρmin = −0.42 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT-Plus (Bruker, 2004 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680900590X/bq2124sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680900590X/bq2124Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the Department of Chemistry, IIT Madras, for the X-ray data collection.

supplementary crystallographic information

Comment

The widespread diterpenoid/norditerpenoid alkaloids posses the 3-azabicyclo [3.3.1]nonane pharmacophore, and as a consequence, the above alkaloids having broad spectrum of biological activities (Jeyaraman et al., 1981; Hardick et al., 1996). Hence, the synthesis and stereochemistry of 3-azabicyclononan-9-ones are more important in recent days (Parthiban et al., 2008a,b,c,d,e). A study of torsion angles, asymmetry parameters and least-squares plane calculation shows that the piperidine ring adopts near ideal chair conformation with the deviation of ring atoms N1 and C8 from the C1/C2/C6/C7 plane by -0.642 (3)Å and 0.712 (3)Å, respectively, QT=0.607 (2)Å, q(2)=0.044 (2)Å and q(3)=-0.606 (2)Å, θ=175.8 (2)°. whereas the cyclohexane ring deviate from the ideal chair conformation; the cyclohexane atoms C4 and C8 deviate from the C2/C3/C5/C6 plane by -0.557 (2)Å and 0.710 (3)Å, respectively, QT=0.560 (2) Å, q(2)=0.117 (2)Å and, q(3)=-0.548 (2)Å, θ=167.9 (2)°. (Cremer & Pople, 1975). Hence, the title compound C20H19Cl2NO, exists in double chair conformation with equatorial dispositions of the para chlorophenyl groups with the torsion angles of C8—C2—C1—C9 and C8—C6—C7—C15 are 177.88 (4)° and -179.01 (4)°, respectively. The aryl groups are oriented at an angle of 31.33 (3)° to each other.

Experimental

In a warm solution of ammonium acetate (0.075 mol) in 50 ml of absolute ethanol, a mixture of cyclohexanone (0.05 mol) and para chlorobenzaldehyde (0.1 mol) was added and gently warmed with stirring on a hot plate till the yellow color was formed during the mixing of the reactants and cooled to room temperature. Then 50 ml of ether was added and allowed to stir over night at room temperature. Thus the obtained crude azabicyclic ketone was separated by filtration and washed with 1:5 ethanol-ether mixture till the solid became colorless. Recrystallization of the compound from ethanol gave X-ray diffraction quality crystals of 2,4-bis(4-chlorophenyl)-3-azabicyclo[3.3.1]nonan-9-one.

Refinement

Nitrogen H atoms were located in a difference Fourier map and refined isotropically. Other hydrogen atoms were fixed geometrically and allowed to ride on the parent carbon atoms, with aromatic C—H =0.93Å, aliphatic C—H =0.98Å and methylene C—H=0.97Å. The displacement parameters were set for phenyl, methylene and aliphatic H atoms at Uiso(H)=1.2Ueq(C).

Figures

Fig. 1.
ORTEP of the molecule with atoms represented as 30% probability ellipsoids.
Fig. 2.
Packing of molecules via N-H..O bond.

Crystal data

C20H19Cl2NOF(000) = 752
Mr = 360.26Dx = 1.311 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4308 reflections
a = 16.2589 (4) Åθ = 2.8–26.3°
b = 6.8983 (2) ŵ = 0.36 mm1
c = 18.1291 (5) ÅT = 298 K
β = 116.149 (1)°Rectangular, colourless
V = 1825.23 (9) Å30.42 × 0.38 × 0.25 mm
Z = 4

Data collection

Bruker APEXII CCD area-detector diffractometer4997 independent reflections
Radiation source: fine-focus sealed tube3241 reflections with I > 2σ(I)
graphiteRint = 0.021
[var phi] and ω scansθmax = 29.8°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Bruker, 1999)h = −21→20
Tmin = 0.863, Tmax = 0.915k = −9→9
15050 measured reflectionsl = −15→25

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135H atoms treated by a mixture of independent and constrained refinement
S = 1.02w = 1/[σ2(Fo2) + (0.0602P)2 + 0.4485P] where P = (Fo2 + 2Fc2)/3
4997 reflections(Δ/σ)max < 0.001
221 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = −0.42 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)are estimated using the full covariance matrix. The cell e.s.d.'s are takeninto account individually in the estimation of e.s.d.'s in distances, anglesand torsion angles; correlations between e.s.d.'s in cell parameters are onlyused when they are defined by crystal symmetry. An approximate (isotropic)treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR andgoodness of fit S are based on F2, conventional R-factors R are basedon F, with F set to zero for negative F2. The threshold expression ofF2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.33305 (11)0.1260 (2)0.01759 (10)0.0384 (3)
H10.39070.10190.06650.046*
C20.29289 (11)−0.0738 (2)−0.02171 (10)0.0410 (4)
H20.3380−0.1414−0.03450.049*
C30.20110 (12)−0.0678 (3)−0.09929 (11)0.0533 (4)
H3A0.20790.0135−0.13990.064*
H3B0.1864−0.1977−0.12190.064*
C40.12129 (12)0.0082 (3)−0.08496 (12)0.0581 (5)
H4A0.12680.1478−0.07790.070*
H4B0.0643−0.0190−0.13300.070*
C50.11811 (12)−0.0827 (3)−0.00979 (12)0.0534 (5)
H5A0.0944−0.2136−0.02350.064*
H5B0.0756−0.00960.00370.064*
C60.21147 (11)−0.0905 (2)0.06658 (11)0.0418 (4)
H60.2052−0.16880.10900.050*
C70.25223 (11)0.1109 (2)0.10384 (10)0.0375 (3)
H70.31060.08930.15240.045*
C80.27891 (11)−0.1870 (2)0.04285 (10)0.0390 (4)
C90.35398 (11)0.2533 (2)−0.03978 (10)0.0414 (4)
C100.29057 (13)0.3777 (3)−0.09592 (12)0.0544 (5)
H100.23160.3836−0.10000.065*
C110.31400 (15)0.4943 (3)−0.14645 (12)0.0615 (5)
H110.27100.5776−0.18410.074*
C120.40091 (16)0.4852 (3)−0.14022 (12)0.0584 (5)
C130.46439 (15)0.3618 (3)−0.08633 (14)0.0654 (6)
H130.52280.3545−0.08350.078*
C140.44093 (13)0.2474 (3)−0.03588 (13)0.0555 (5)
H140.48450.16460.00150.067*
C150.18866 (11)0.2164 (2)0.13081 (10)0.0385 (3)
C160.17785 (12)0.1464 (3)0.19803 (11)0.0473 (4)
H160.21250.04070.22710.057*
C170.11692 (13)0.2301 (3)0.22247 (11)0.0528 (4)
H170.10970.18040.26700.063*
C180.06701 (12)0.3877 (3)0.18023 (12)0.0509 (4)
C190.07748 (13)0.4646 (3)0.11480 (12)0.0540 (5)
H190.04460.57400.08770.065*
C200.13769 (12)0.3765 (2)0.08997 (11)0.0471 (4)
H200.14400.42590.04500.057*
Cl1−0.01108 (4)0.49239 (10)0.21027 (4)0.0838 (2)
Cl20.43337 (5)0.64178 (11)−0.19813 (4)0.0956 (3)
N10.27045 (9)0.2229 (2)0.04419 (9)0.0401 (3)
O10.31840 (9)−0.33704 (16)0.07301 (8)0.0515 (3)
H1A0.2917 (13)0.334 (3)0.0645 (12)0.058 (6)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0379 (8)0.0331 (8)0.0479 (9)−0.0024 (6)0.0223 (7)0.0015 (7)
C20.0440 (9)0.0329 (8)0.0532 (9)−0.0007 (7)0.0278 (8)−0.0020 (7)
C30.0591 (11)0.0489 (10)0.0498 (10)−0.0103 (9)0.0221 (9)−0.0051 (8)
C40.0413 (10)0.0552 (12)0.0634 (12)−0.0046 (8)0.0100 (9)−0.0021 (10)
C50.0407 (9)0.0473 (10)0.0750 (13)−0.0100 (8)0.0279 (9)−0.0112 (9)
C60.0462 (9)0.0304 (8)0.0578 (10)−0.0030 (7)0.0312 (8)0.0018 (7)
C70.0387 (8)0.0317 (7)0.0458 (9)0.0003 (6)0.0218 (7)0.0016 (7)
C80.0401 (8)0.0273 (7)0.0514 (9)−0.0059 (6)0.0219 (7)−0.0053 (7)
C90.0470 (9)0.0327 (8)0.0530 (9)−0.0049 (7)0.0298 (8)−0.0023 (7)
C100.0526 (11)0.0557 (11)0.0635 (11)0.0042 (9)0.0334 (9)0.0110 (9)
C110.0770 (14)0.0560 (12)0.0556 (11)0.0002 (10)0.0331 (11)0.0112 (9)
C120.0821 (14)0.0544 (11)0.0527 (10)−0.0244 (10)0.0424 (10)−0.0081 (9)
C130.0637 (13)0.0668 (13)0.0862 (15)−0.0121 (11)0.0517 (12)0.0008 (12)
C140.0514 (11)0.0483 (10)0.0781 (13)−0.0017 (8)0.0387 (10)0.0053 (9)
C150.0397 (8)0.0334 (8)0.0445 (8)−0.0023 (6)0.0205 (7)−0.0035 (7)
C160.0531 (10)0.0452 (10)0.0471 (9)0.0052 (8)0.0254 (8)0.0035 (8)
C170.0584 (11)0.0601 (12)0.0475 (10)−0.0022 (9)0.0305 (9)−0.0062 (9)
C180.0442 (10)0.0534 (11)0.0576 (11)−0.0012 (8)0.0249 (9)−0.0186 (9)
C190.0515 (11)0.0435 (10)0.0654 (12)0.0096 (8)0.0243 (9)−0.0027 (9)
C200.0534 (10)0.0394 (9)0.0528 (10)0.0025 (8)0.0274 (8)0.0022 (8)
Cl10.0721 (4)0.0962 (5)0.0986 (5)0.0135 (3)0.0519 (3)−0.0262 (4)
Cl20.1246 (6)0.1079 (5)0.0667 (4)−0.0502 (4)0.0535 (4)0.0061 (3)
N10.0490 (8)0.0274 (6)0.0524 (8)−0.0046 (6)0.0302 (7)−0.0020 (6)
O10.0613 (8)0.0313 (6)0.0686 (8)0.0042 (5)0.0347 (7)0.0037 (6)

Geometric parameters (Å, °)

C1—N11.466 (2)C9—C101.382 (3)
C1—C91.511 (2)C9—C141.385 (2)
C1—C21.557 (2)C10—C111.393 (3)
C1—H10.9800C10—H100.9300
C2—C81.505 (2)C11—C121.368 (3)
C2—C31.535 (2)C11—H110.9300
C2—H20.9800C12—C131.363 (3)
C3—C41.524 (3)C12—Cl21.7422 (18)
C3—H3A0.9700C13—C141.383 (3)
C3—H3B0.9700C13—H130.9300
C4—C51.522 (3)C14—H140.9300
C4—H4A0.9700C15—C201.383 (2)
C4—H4B0.9700C15—C161.392 (2)
C5—C61.540 (3)C16—C171.378 (2)
C5—H5A0.9700C16—H160.9300
C5—H5B0.9700C17—C181.371 (3)
C6—C81.499 (2)C17—H170.9300
C6—C71.559 (2)C18—C191.377 (3)
C6—H60.9800C18—Cl11.7433 (17)
C7—N11.462 (2)C19—C201.385 (2)
C7—C151.511 (2)C19—H190.9300
C7—H70.9800C20—H200.9300
C8—O11.2137 (19)N1—H1A0.85 (2)
N1—C1—C9111.16 (13)O1—C8—C6123.91 (15)
N1—C1—C2110.05 (12)O1—C8—C2124.16 (15)
C9—C1—C2112.08 (13)C6—C8—C2111.92 (13)
N1—C1—H1107.8C10—C9—C14118.01 (16)
C9—C1—H1107.8C10—C9—C1123.14 (15)
C2—C1—H1107.8C14—C9—C1118.85 (16)
C8—C2—C3107.89 (13)C9—C10—C11120.76 (18)
C8—C2—C1106.25 (13)C9—C10—H10119.6
C3—C2—C1115.97 (14)C11—C10—H10119.6
C8—C2—H2108.8C12—C11—C10119.42 (19)
C3—C2—H2108.8C12—C11—H11120.3
C1—C2—H2108.8C10—C11—H11120.3
C4—C3—C2114.21 (15)C13—C12—C11121.07 (17)
C4—C3—H3A108.7C13—C12—Cl2118.99 (16)
C2—C3—H3A108.7C11—C12—Cl2119.86 (18)
C4—C3—H3B108.7C12—C13—C14119.24 (19)
C2—C3—H3B108.7C12—C13—H13120.4
H3A—C3—H3B107.6C14—C13—H13120.4
C5—C4—C3112.21 (16)C13—C14—C9121.49 (19)
C5—C4—H4A109.2C13—C14—H14119.3
C3—C4—H4A109.2C9—C14—H14119.3
C5—C4—H4B109.2C20—C15—C16117.94 (15)
C3—C4—H4B109.2C20—C15—C7123.06 (14)
H4A—C4—H4B107.9C16—C15—C7118.96 (14)
C4—C5—C6114.24 (14)C17—C16—C15121.48 (17)
C4—C5—H5A108.7C17—C16—H16119.3
C6—C5—H5A108.7C15—C16—H16119.3
C4—C5—H5B108.7C18—C17—C16119.03 (17)
C6—C5—H5B108.7C18—C17—H17120.5
H5A—C5—H5B107.6C16—C17—H17120.5
C8—C6—C5108.27 (14)C17—C18—C19121.29 (16)
C8—C6—C7107.15 (12)C17—C18—Cl1119.16 (15)
C5—C6—C7114.88 (14)C19—C18—Cl1119.55 (15)
C8—C6—H6108.8C18—C19—C20118.97 (17)
C5—C6—H6108.8C18—C19—H19120.5
C7—C6—H6108.8C20—C19—H19120.5
N1—C7—C15112.03 (12)C15—C20—C19121.25 (17)
N1—C7—C6109.68 (13)C15—C20—H20119.4
C15—C7—C6110.42 (12)C19—C20—H20119.4
N1—C7—H7108.2C7—N1—C1113.48 (12)
C15—C7—H7108.2C7—N1—H1A109.2 (14)
C6—C7—H7108.2C1—N1—H1A110.1 (13)
N1—C1—C2—C8−57.87 (16)C1—C9—C10—C11178.93 (17)
C9—C1—C2—C8177.89 (13)C9—C10—C11—C120.0 (3)
N1—C1—C2—C361.99 (18)C10—C11—C12—C131.1 (3)
C9—C1—C2—C3−62.25 (18)C10—C11—C12—Cl2−175.72 (16)
C8—C2—C3—C453.9 (2)C11—C12—C13—C14−1.5 (3)
C1—C2—C3—C4−65.1 (2)Cl2—C12—C13—C14175.27 (16)
C2—C3—C4—C5−46.3 (2)C12—C13—C14—C91.0 (3)
C3—C4—C5—C645.7 (2)C10—C9—C14—C130.0 (3)
C4—C5—C6—C8−53.0 (2)C1—C9—C14—C13−179.45 (18)
C4—C5—C6—C766.6 (2)N1—C7—C15—C2014.1 (2)
C8—C6—C7—N157.05 (17)C6—C7—C15—C20−108.49 (17)
C5—C6—C7—N1−63.26 (17)N1—C7—C15—C16−168.34 (15)
C8—C6—C7—C15−179.02 (13)C6—C7—C15—C1669.09 (19)
C5—C6—C7—C1560.67 (18)C20—C15—C16—C171.5 (3)
C5—C6—C8—O1−118.50 (18)C7—C15—C16—C17−176.24 (16)
C7—C6—C8—O1117.07 (17)C15—C16—C17—C18−1.0 (3)
C5—C6—C8—C262.45 (17)C16—C17—C18—C19−0.8 (3)
C7—C6—C8—C2−61.98 (17)C16—C17—C18—Cl1179.30 (14)
C3—C2—C8—O1118.08 (18)C17—C18—C19—C202.0 (3)
C1—C2—C8—O1−116.94 (17)Cl1—C18—C19—C20−178.05 (14)
C3—C2—C8—C6−62.87 (17)C16—C15—C20—C19−0.2 (3)
C1—C2—C8—C662.11 (17)C7—C15—C20—C19177.44 (16)
N1—C1—C9—C10−35.0 (2)C18—C19—C20—C15−1.5 (3)
C2—C1—C9—C1088.57 (19)C15—C7—N1—C1179.14 (13)
N1—C1—C9—C14144.36 (16)C6—C7—N1—C1−57.87 (17)
C2—C1—C9—C14−92.02 (19)C9—C1—N1—C7−176.47 (13)
C14—C9—C10—C11−0.5 (3)C2—C1—N1—C758.76 (17)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.85 (2)2.31 (2)3.1202 (18)160.2 (18)

Symmetry codes: (i) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2124).

References

  • Bruker (1999). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2004). APEX2 and SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Hardick, D. J., Blagbrough, I. S., Cooper, G., Potter, B. V. L., Critchley, T. & Wonnacott, S. (1996). J. Med. Chem.39, 4860–4866. [PubMed]
  • Jeyaraman, R. & Avila, S. (1981). Chem. Rev.81, 149–174.
  • Parthiban, P., Ramkumar, V., Kim, M. S., Lim, K. T. & Jeong, Y. T. (2008a). Acta Cryst. E64, o1586. [PMC free article] [PubMed]
  • Parthiban, P., Ramkumar, V., Kim, M. S., Lim, K. T. & Jeong, Y. T. (2008b). Acta Cryst. E64, o2332. [PMC free article] [PubMed]
  • Parthiban, P., Ramkumar, V., Kim, M. S., Son, S. M. & Jeong, Y. T. (2008c). Acta Cryst. E64, o2385. [PMC free article] [PubMed]
  • Parthiban, P., Ramkumar, V., Santan, H. D., Kim, J. T. & Jeong, Y. T. (2008d). Acta Cryst. E64, o1710. [PMC free article] [PubMed]
  • Parthiban, P., Thirumurugan, K., Ramkumar, V., Pazhamalai, S. & Jeong, Y. T. (2008e). Acta Cryst. E64, o1708–o1709. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography