PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 March 1; 65(Pt 3): o574.
Published online 2009 February 21. doi:  10.1107/S1600536809005583
PMCID: PMC2968689

9-Butyl-9H-carbazole

Abstract

The title compound, C16H17N, is a carbazole derivative that has been designed and synthesized as a potential organic electronic device, such as an OLED. The tricyclic aromatic ring system is essentially planar, the two outer rings making a dihedral angle of 4.8 (1)°. No classical hydrogen bonds are observed in the crystal structure.

Related literature

For typical bond lengths in organic structures, see: Allen et al. (1987 [triangle]); For general background and related structures, see: Yang et al. (2004 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o574-scheme1.jpg

Experimental

Crystal data

  • C16H17N
  • M r = 223.31
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o574-efi1.jpg
  • a = 5.544 (1) Å
  • b = 11.276 (2) Å
  • c = 20.369 (4) Å
  • V = 1273.4 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.07 mm−1
  • T = 298 K
  • 0.30 × 0.20 × 0.10 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: ψ scan (North et al., 1968 [triangle]) T min = 0.980, T max = 0.993
  • 2671 measured reflections
  • 1372 independent reflections
  • 1500 reflections with I > 2σ(I)
  • R int = 0.062
  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.059
  • wR(F 2) = 0.147
  • S = 1.00
  • 1372 reflections
  • 154 parameters
  • H-atom parameters constrained
  • Δρmax = 0.17 e Å−3
  • Δρmin = −0.14 e Å−3

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994 [triangle]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809005583/im2093sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809005583/im2093Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Center of Testing and Analysis, Nanjing University, for the data collection.

supplementary crystallographic information

Comment

The title compound, C16H17N, is a carbazole derivative that has been designed and synthesized as a potential organic electronic device, such as OLED (Yang et al., 2004). We report herein the crystal structure of the title compound, (I), which is of interest to us in the field.

The molecular structure of (I) is shown in Fig. 1. The bond lengths and angles are within normal ranges (Allen et al., 1987). The tricyclic aromatic ring system is essentially planar. There are no classical hydrogen bonds observed in the crystal structure.

Experimental

The title compound, (I), was prepared by a method reported in literature (Yang et al., 2004). The crystals were obtained by dissolving (I) (0.2 g) in petroleum ether (b.p. 60–90 °C) (50 ml) and evaporating the solvent slowly at room temperature for about 3 d.

Refinement

In the absence of significant anomalous dispersion effects, Friedel pairs were averaged. H atoms were positioned geometrically, C—H = 0.93 and 0.97 Å for aromatic and methyl H, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C/O), where x = 1.2 for aromatic H and x = 1.5 for other H.

Figures

Fig. 1.
The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Crystal data

C16H17NF(000) = 480
Mr = 223.31Dx = 1.165 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 25 reflections
a = 5.544 (1) Åθ = 9–13°
b = 11.276 (2) ŵ = 0.07 mm1
c = 20.369 (4) ÅT = 298 K
V = 1273.4 (4) Å3Needle, colourless
Z = 40.30 × 0.20 × 0.10 mm

Data collection

Enraf–Nonius CAD-4 diffractometer1500 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.062
graphiteθmax = 25.3°, θmin = 2.0°
ω/2θ scansh = 0→6
Absorption correction: ψ scan (North et al., 1968)k = 0→13
Tmin = 0.980, Tmax = 0.993l = −24→24
2671 measured reflections3 standard reflections every 200 reflections
1372 independent reflections intensity decay: 1%

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.147H-atom parameters constrained
S = 1.00w = 1/[σ2(Fo2) + (0.06P)2 + 0.13P] where P = (Fo2 + 2Fc2)/3
1372 reflections(Δ/σ)max < 0.001
154 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = −0.14 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N0.1136 (6)0.1561 (2)0.16013 (14)0.0639 (8)
C1−0.0693 (11)−0.1920 (4)0.0678 (2)0.1075 (18)
H1A−0.2201−0.22940.07820.161*
H1B0.0570−0.25020.06800.161*
H1C−0.0796−0.15630.02510.161*
C2−0.0144 (8)−0.0965 (3)0.1188 (2)0.0770 (12)
H2A−0.1447−0.03910.11910.092*
H2B−0.0074−0.13290.16190.092*
C30.2163 (8)−0.0341 (3)0.10593 (19)0.0748 (12)
H3A0.20510.00500.06360.090*
H3B0.3441−0.09260.10300.090*
C40.2869 (8)0.0583 (3)0.1576 (2)0.0784 (12)
H4A0.29520.02050.20030.094*
H4B0.44560.08940.14740.094*
C5−0.0714 (7)0.1694 (3)0.20522 (18)0.0642 (9)
C6−0.1348 (8)0.0987 (4)0.25810 (19)0.0764 (12)
H6A−0.05070.02940.26760.092*
C7−0.3244 (11)0.1343 (4)0.2957 (2)0.0937 (15)
H7A−0.36600.08990.33250.112*
C8−0.4570 (10)0.2346 (4)0.2807 (2)0.0953 (15)
H8A−0.58910.25480.30650.114*
C9−0.3964 (8)0.3046 (4)0.2283 (2)0.0810 (12)
H9A−0.48780.37130.21820.097*
C10−0.1954 (7)0.2748 (3)0.18976 (18)0.0620 (9)
C11−0.0777 (7)0.3272 (3)0.13483 (17)0.0621 (9)
C12−0.1083 (9)0.4315 (3)0.0996 (2)0.0741 (12)
H12A−0.23520.48240.10950.089*
C130.0510 (11)0.4591 (3)0.0499 (2)0.0903 (15)
H13A0.03200.52950.02660.108*
C140.2388 (11)0.3834 (4)0.0341 (2)0.0879 (14)
H14A0.34390.40400.00040.105*
C150.2736 (9)0.2782 (3)0.06719 (19)0.0759 (11)
H15A0.39810.22690.05590.091*
C160.1142 (7)0.2517 (3)0.11837 (18)0.0621 (9)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N0.0568 (19)0.0591 (15)0.0759 (19)0.0061 (15)−0.0073 (18)0.0044 (14)
C10.124 (5)0.098 (3)0.100 (3)−0.004 (4)−0.009 (4)−0.027 (3)
C20.069 (3)0.083 (2)0.079 (3)−0.001 (2)0.012 (3)−0.003 (2)
C30.072 (3)0.069 (2)0.083 (3)0.009 (2)0.005 (2)0.002 (2)
C40.071 (3)0.068 (2)0.097 (3)0.016 (2)−0.007 (3)0.003 (2)
C50.067 (2)0.0624 (19)0.063 (2)−0.0042 (19)−0.008 (2)−0.0021 (17)
C60.074 (3)0.086 (3)0.070 (2)−0.010 (2)−0.007 (3)0.005 (2)
C70.106 (4)0.102 (3)0.073 (3)−0.017 (3)0.011 (3)−0.005 (2)
C80.090 (4)0.117 (3)0.079 (3)−0.015 (3)0.015 (3)−0.035 (3)
C90.069 (3)0.087 (3)0.087 (3)0.003 (2)−0.004 (3)−0.018 (2)
C100.061 (2)0.066 (2)0.059 (2)0.0000 (18)−0.002 (2)−0.0108 (17)
C110.062 (2)0.0638 (18)0.060 (2)−0.002 (2)−0.009 (2)−0.0041 (16)
C120.082 (3)0.061 (2)0.080 (3)0.010 (2)−0.017 (3)−0.0081 (19)
C130.120 (4)0.069 (2)0.081 (3)−0.006 (3)−0.017 (3)0.005 (2)
C140.100 (4)0.091 (3)0.072 (3)−0.017 (3)0.004 (3)0.008 (2)
C150.070 (3)0.077 (2)0.081 (3)−0.006 (2)0.010 (2)−0.002 (2)
C160.061 (2)0.0595 (17)0.066 (2)0.0048 (19)−0.004 (2)−0.0030 (17)

Geometric parameters (Å, °)

N—C161.373 (4)C6—H6A0.9300
N—C51.385 (4)C7—C81.384 (6)
N—C41.463 (4)C7—H7A0.9300
C1—C21.527 (5)C8—C91.369 (5)
C1—H1A0.9600C8—H8A0.9300
C1—H1B0.9600C9—C101.403 (5)
C1—H1C0.9600C9—H9A0.9300
C2—C31.483 (6)C10—C111.423 (5)
C2—H2A0.9700C11—C121.388 (4)
C2—H2B0.9700C11—C161.403 (5)
C3—C41.532 (5)C12—C131.380 (6)
C3—H3A0.9700C12—H12A0.9300
C3—H3B0.9700C13—C141.384 (6)
C4—H4A0.9700C13—H13A0.9300
C4—H4B0.9700C14—C151.378 (5)
C5—C61.385 (5)C14—H14A0.9300
C5—C101.409 (4)C15—C161.399 (5)
C6—C71.361 (6)C15—H15A0.9300
C16—N—C5109.1 (3)C5—C6—H6A121.2
C16—N—C4124.6 (3)C6—C7—C8121.8 (4)
C5—N—C4126.2 (3)C6—C7—H7A119.1
C2—C1—H1A109.5C8—C7—H7A119.1
C2—C1—H1B109.5C9—C8—C7120.9 (5)
H1A—C1—H1B109.5C9—C8—H8A119.6
C2—C1—H1C109.5C7—C8—H8A119.6
H1A—C1—H1C109.5C8—C9—C10119.5 (4)
H1B—C1—H1C109.5C8—C9—H9A120.2
C3—C2—C1112.7 (4)C10—C9—H9A120.2
C3—C2—H2A109.0C9—C10—C5117.7 (4)
C1—C2—H2A109.0C9—C10—C11134.8 (4)
C3—C2—H2B109.0C5—C10—C11107.6 (3)
C1—C2—H2B109.0C12—C11—C16118.9 (4)
H2A—C2—H2B107.8C12—C11—C10134.5 (4)
C2—C3—C4114.9 (4)C16—C11—C10106.5 (3)
C2—C3—H3A108.5C13—C12—C11119.5 (4)
C4—C3—H3A108.5C13—C12—H12A120.3
C2—C3—H3B108.5C11—C12—H12A120.3
C4—C3—H3B108.5C12—C13—C14120.9 (4)
H3A—C3—H3B107.5C12—C13—H13A119.6
N—C4—C3111.6 (3)C14—C13—H13A119.6
N—C4—H4A109.3C15—C14—C13121.5 (4)
C3—C4—H4A109.3C15—C14—H14A119.2
N—C4—H4B109.3C13—C14—H14A119.2
C3—C4—H4B109.3C14—C15—C16117.4 (4)
H4A—C4—H4B108.0C14—C15—H15A121.3
C6—C5—N129.9 (4)C16—C15—H15A121.3
C6—C5—C10122.4 (4)N—C16—C15129.1 (4)
N—C5—C10107.7 (3)N—C16—C11109.1 (3)
C7—C6—C5117.7 (4)C15—C16—C11121.8 (3)
C7—C6—H6A121.2
C1—C2—C3—C4−177.0 (3)C9—C10—C11—C123.9 (7)
C16—N—C4—C3−82.4 (4)C5—C10—C11—C12−176.8 (4)
C5—N—C4—C399.4 (4)C9—C10—C11—C16−179.1 (4)
C2—C3—C4—N−64.0 (4)C5—C10—C11—C160.2 (4)
C16—N—C5—C6−176.8 (4)C16—C11—C12—C13−0.6 (5)
C4—N—C5—C61.6 (6)C10—C11—C12—C13176.1 (4)
C16—N—C5—C102.0 (4)C11—C12—C13—C140.8 (6)
C4—N—C5—C10−179.6 (3)C12—C13—C14—C150.1 (7)
N—C5—C6—C7178.7 (4)C13—C14—C15—C16−1.2 (6)
C10—C5—C6—C70.1 (5)C5—N—C16—C15177.2 (4)
C5—C6—C7—C82.6 (6)C4—N—C16—C15−1.2 (6)
C6—C7—C8—C9−2.3 (7)C5—N—C16—C11−1.9 (4)
C7—C8—C9—C10−0.7 (6)C4—N—C16—C11179.7 (3)
C8—C9—C10—C53.2 (5)C14—C15—C16—N−177.5 (4)
C8—C9—C10—C11−177.5 (4)C14—C15—C16—C111.5 (5)
C6—C5—C10—C9−3.0 (5)C12—C11—C16—N178.6 (3)
N—C5—C10—C9178.1 (3)C10—C11—C16—N1.0 (4)
C6—C5—C10—C11177.6 (3)C12—C11—C16—C15−0.6 (5)
N—C5—C10—C11−1.3 (4)C10—C11—C16—C15−178.1 (3)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2093).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Enraf–Nonius (1994). CAD-4 EXPRESS Enraf–Nonius, Delft, The Netherlands.
  • Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Yang, J. X., Tao, X. T., Yuan, C. X., Yan, Y. X., Wang, L., Liu, Z., Ren, Y. & Jiang, M. H. (2004). J. Am. Chem. Soc.127, 3278–3279. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography