PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 March 1; 65(Pt 3): o571.
Published online 2009 February 21. doi:  10.1107/S1600536809004863
PMCID: PMC2968688

N-Phenyl­nicotinamide

Abstract

In the title compound, C12H10N2O, the dihedral angle between the phenyl and pyridine rings is 64.81 (1)°. Inter­molecular N—H(...)O hydrogen bonds connect the mol­ecules into chains running along the b axis.

Related literature

For general background, see: de Souza et al. (2005 [triangle]); Gdaniec et al. (1979 [triangle]). For related crystal structures, see: Cuffini et al. (2006 [triangle]). For graph-set motifs, see Bernstein et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o571-scheme1.jpg

Experimental

Crystal data

  • C12H10N2O
  • M r = 198.22
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o571-efi1.jpg
  • a = 18.732 (4) Å
  • b = 5.2766 (11) Å
  • c = 20.248 (4) Å
  • β = 103.746 (4)°
  • V = 1944.0 (7) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 290 K
  • 0.23 × 0.15 × 0.11 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.917, T max = 0.990
  • 6923 measured reflections
  • 1813 independent reflections
  • 1287 reflections with I > 2σ(I)
  • R int = 0.039

Refinement

  • R[F 2 > 2σ(F 2)] = 0.049
  • wR(F 2) = 0.112
  • S = 1.03
  • 1813 reflections
  • 140 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.19 e Å−3
  • Δρmin = −0.21 e Å−3

Data collection: SMART (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS90 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1999 [triangle]) and PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: PLATON.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809004863/bt2869sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809004863/bt2869Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Department of Science and Technology, India, for use of the CCD facility set up under the IRHPA–DST programme at the IISc. We thank Professor T. N. Guru Row, IISc, Bangalore, for useful crystallographic discussions. FNK thanks the DST for Fast Track Proposal funding.

supplementary crystallographic information

Comment

Nicotinamides were involved in biological processes such as production of energy, the synthesis of fatty acids, cholesterol and steroids, signal transduction, and the maintenance of the integrity of the genome (de Souza et al., 2005). Nicotinamides play a major role in the prevention or delay of the onset of type 1 diabetes mellitus. They also have anti-oxidant, anti-inflammatory and anti-carcinogenic activities (Gdaniec et al., 1979; Cuffini et al., 2006).

The title compound is non planar molecule with a dihedral angle of 64.81 (1)° between the phenyl and pyridine ring. N—H···O intermolecular hydrogen bonds connect the molecules to one dimensional molecular chains along the b axis and forming a C(4) graph-set motif (Bernstein et al., 1995).

Experimental

Nicotinoyl chloride and aniline in tetrahydrofuran solution was stirred for 8 h at ambient temperature in the presence of a catalytic quantity of triethylamine. The reaction mixture was neutralized with a saturated aqueous sodium hydrogencarbonate solution and the resulting aqueous mixture was extracted with ethyl acetate and then concentrated under reduced pressure. Then, it was subjected to chromatography on silica, using hexane–ethyl acetate gradients. Crystals were grown from an ethanolic solution.

Refinement

H atoms bonded to C were positioned geometrically and refined using a riding model with C—H bond lengths of 0.93 Å and Uiso(H) = 1.2Ueq(C). The H atom bonded to N was located from a difference Fourier map and refined isotropically.

Figures

Fig. 1.
The molecular structure of the title compound shown with 50% probability displacement ellipsoids.
Fig. 2.
The crystal packing diagram of the title compound. The dotted lines indicate N—H···O intermolecular hydrogen bonds forming molecular chains along the b axis. All H atoms not involved in hydrogen bonds have been omitted ...

Crystal data

C12H10N2OF(000) = 832
Mr = 198.22Dx = 1.355 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 829 reflections
a = 18.732 (4) Åθ = 2.0–24.4°
b = 5.2766 (11) ŵ = 0.09 mm1
c = 20.248 (4) ÅT = 290 K
β = 103.746 (4)°Cylindrical, colourless
V = 1944.0 (7) Å30.23 × 0.15 × 0.11 mm
Z = 8

Data collection

Bruker SMART CCD area-detector diffractometer1813 independent reflections
Radiation source: fine-focus sealed tube1287 reflections with I > 2σ(I)
graphiteRint = 0.039
[var phi] and ω scansθmax = 25.5°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −22→21
Tmin = 0.917, Tmax = 0.990k = −6→6
6923 measured reflectionsl = −24→24

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H atoms treated by a mixture of independent and constrained refinement
S = 1.03w = 1/[σ2(Fo2) + (0.0469P)2 + 0.7301P] where P = (Fo2 + 2Fc2)/3
1813 reflections(Δ/σ)max < 0.001
140 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = −0.21 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.70535 (8)0.6222 (2)0.07461 (7)0.0535 (5)
N10.50992 (9)0.7693 (3)−0.06750 (9)0.0510 (5)
N20.72283 (9)1.0437 (3)0.09527 (8)0.0403 (4)
H2N0.7016 (12)1.196 (5)0.0809 (11)0.075 (8)*
C10.78193 (10)1.0299 (3)0.15450 (9)0.0343 (5)
C20.83422 (11)0.8400 (4)0.16449 (10)0.0430 (5)
H20.83160.71270.13220.052*
C30.89028 (11)0.8406 (4)0.22253 (10)0.0480 (6)
H30.92550.71280.22920.058*
C40.89503 (12)1.0271 (4)0.27086 (11)0.0480 (6)
H40.93271.02500.31020.058*
C50.84308 (11)1.2170 (4)0.26008 (10)0.0465 (6)
H50.84601.34510.29220.056*
C60.78691 (11)1.2189 (4)0.20234 (9)0.0403 (5)
H60.75221.34820.19550.048*
C70.68817 (11)0.8434 (3)0.05987 (9)0.0380 (5)
C80.62589 (10)0.9088 (3)0.00086 (9)0.0342 (5)
C90.62425 (11)1.1201 (3)−0.03994 (9)0.0392 (5)
H90.66201.2387−0.03030.047*
C100.56564 (11)1.1513 (4)−0.09499 (10)0.0458 (5)
H100.56331.2900−0.12380.055*
C110.51068 (12)0.9730 (4)−0.10646 (10)0.0489 (6)
H110.47140.9955−0.14390.059*
C120.56755 (11)0.7414 (4)−0.01519 (10)0.0427 (5)
H120.56870.60000.01250.051*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0640 (10)0.0257 (7)0.0580 (9)0.0019 (7)−0.0108 (8)0.0037 (6)
N10.0437 (11)0.0428 (10)0.0586 (12)−0.0019 (8)−0.0036 (10)−0.0025 (9)
N20.0454 (11)0.0298 (9)0.0410 (10)0.0004 (8)0.0012 (8)−0.0012 (7)
C10.0331 (11)0.0339 (10)0.0336 (10)−0.0032 (8)0.0036 (9)0.0021 (8)
C20.0419 (12)0.0383 (11)0.0455 (12)−0.0003 (9)0.0038 (10)−0.0076 (9)
C30.0403 (12)0.0385 (11)0.0590 (14)0.0078 (9)−0.0006 (11)0.0027 (10)
C40.0416 (13)0.0482 (12)0.0454 (12)−0.0047 (10)−0.0070 (10)0.0019 (10)
C50.0513 (14)0.0401 (12)0.0437 (12)−0.0049 (10)0.0028 (11)−0.0094 (9)
C60.0403 (12)0.0344 (10)0.0431 (12)0.0012 (9)0.0036 (10)−0.0019 (9)
C70.0433 (12)0.0308 (10)0.0392 (11)−0.0019 (9)0.0083 (9)−0.0010 (8)
C80.0347 (11)0.0349 (10)0.0318 (10)0.0022 (9)0.0052 (9)−0.0020 (8)
C90.0383 (11)0.0364 (10)0.0403 (11)−0.0026 (9)0.0039 (10)−0.0027 (9)
C100.0512 (14)0.0365 (11)0.0460 (12)0.0057 (10)0.0042 (11)0.0048 (9)
C110.0449 (13)0.0468 (12)0.0456 (12)0.0093 (10)−0.0076 (10)−0.0033 (10)
C120.0441 (13)0.0342 (11)0.0464 (12)−0.0007 (9)0.0038 (11)0.0021 (9)

Geometric parameters (Å, °)

O1—C71.228 (2)C4—H40.9300
N1—C121.329 (2)C5—C61.375 (3)
N1—C111.335 (3)C5—H50.9300
N2—C71.354 (2)C6—H60.9300
N2—C11.428 (2)C7—C81.498 (3)
N2—H2N0.91 (2)C8—C121.382 (3)
C1—C61.378 (3)C8—C91.384 (2)
C1—C21.382 (3)C9—C101.376 (3)
C2—C31.377 (3)C9—H90.9300
C2—H20.9300C10—C111.373 (3)
C3—C41.376 (3)C10—H100.9300
C3—H30.9300C11—H110.9300
C4—C51.378 (3)C12—H120.9300
C12—N1—C11116.06 (18)C5—C6—H6119.9
C7—N2—C1125.70 (17)C1—C6—H6119.9
C7—N2—H2N113.6 (14)O1—C7—N2123.27 (18)
C1—N2—H2N120.3 (14)O1—C7—C8121.46 (17)
C6—C1—C2119.65 (17)N2—C7—C8115.27 (16)
C6—C1—N2117.58 (17)C12—C8—C9118.05 (17)
C2—C1—N2122.76 (17)C12—C8—C7117.55 (17)
C3—C2—C1119.56 (18)C9—C8—C7124.36 (17)
C3—C2—H2120.2C10—C9—C8118.71 (18)
C1—C2—H2120.2C10—C9—H9120.6
C4—C3—C2121.05 (19)C8—C9—H9120.6
C4—C3—H3119.5C11—C10—C9118.47 (19)
C2—C3—H3119.5C11—C10—H10120.8
C3—C4—C5118.93 (19)C9—C10—H10120.8
C3—C4—H4120.5N1—C11—C10124.37 (19)
C5—C4—H4120.5N1—C11—H11117.8
C6—C5—C4120.61 (19)C10—C11—H11117.8
C6—C5—H5119.7N1—C12—C8124.33 (18)
C4—C5—H5119.7N1—C12—H12117.8
C5—C6—C1120.20 (18)C8—C12—H12117.8
C7—N2—C1—C6−148.13 (19)O1—C7—C8—C1231.6 (3)
C7—N2—C1—C233.3 (3)N2—C7—C8—C12−147.87 (18)
C6—C1—C2—C30.7 (3)O1—C7—C8—C9−145.9 (2)
N2—C1—C2—C3179.18 (18)N2—C7—C8—C934.6 (3)
C1—C2—C3—C40.1 (3)C12—C8—C9—C10−1.2 (3)
C2—C3—C4—C5−0.8 (3)C7—C8—C9—C10176.34 (18)
C3—C4—C5—C60.7 (3)C8—C9—C10—C111.0 (3)
C4—C5—C6—C10.1 (3)C12—N1—C11—C10−1.0 (3)
C2—C1—C6—C5−0.8 (3)C9—C10—C11—N10.2 (3)
N2—C1—C6—C5−179.35 (17)C11—N1—C12—C80.8 (3)
C1—N2—C7—O1−1.5 (3)C9—C8—C12—N10.3 (3)
C1—N2—C7—C8177.91 (17)C7—C8—C12—N1−177.39 (19)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2N···O1i0.91 (3)2.26 (3)3.088 (2)152 (2)

Symmetry codes: (i) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2869).

References

  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555-1573.
  • Bruker (2004). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cuffini, S., Glidewell, C., Low, J. N., de Oliveira, A. G., de Souza, M. V. N., Vasconcelos, T. R. A., Wardell, S. M. S. V. & Wardell, J. L. (2006). Acta Cryst. B62, 651–665. [PubMed]
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Gdaniec, M., Jaskolski, M. & Kosturkiewicz, Z. (1979). Pol. J. Chem.53, 2563–2569.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Souza, M. V. N. de, Vasconcelos, T. R. A., Wardell, S. M. S. V., Wardell, J. L., Low, J. N. & Glidewell, C. (2005). Acta Cryst. C61, o204–o208. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography