PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 March 1; 65(Pt 3): m343.
Published online 2009 February 28. doi:  10.1107/S1600536809003316
PMCID: PMC2968687

{6,6′-Dimeth­oxy-2,2′-[6-bromo­pyridine-2,3-diylbis(nitrilo­methyl­idyne)]­diphenol­ato}­copper(II) methanol solvate

Abstract

In the title compound, [Cu(C21H16BrN3O4)]·CH3OH, the CuII ion is coordinated by two N [Cu—N = 1.814 (3) and 1.917 (3) Å] and two O [Cu—O = 1.805 (3) and 1.893 (3) Å] atoms from the tetra­dentate Schiff base ligand in a distorted square-planar geometry. In the crystal structure, the approximately planar Cu complex mol­ecules are paired into centrosymmetric dimers with short inter­molecular Cu(...)N distances of 3.162 (3) Å. Weak O---H...O hydrogen bonds may help to stabilize the structure.

Related literature

For a related crystal structure, see Saha et al. (2007 [triangle]). For general background, see: Ghosh et al. (2006 [triangle]); Nayak et al. (2006 [triangle]); Singh et al. (2007 [triangle]); Yu et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m343-scheme1.jpg

Experimental

Crystal data

  • [Cu(C21H16BrN3O4)]·CH4O
  • M r = 549.86
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m343-efi1.jpg
  • a = 7.4520 (8) Å
  • b = 11.5402 (13) Å
  • c = 12.9432 (14) Å
  • α = 104.345 (2)°
  • β = 96.467 (2)°
  • γ = 96.531 (2)°
  • V = 1059.9 (2) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 2.96 mm−1
  • T = 293 (2) K
  • 0.15 × 0.13 × 0.11 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003 [triangle]) T min = 0.665, T max = 0.737
  • 5332 measured reflections
  • 3705 independent reflections
  • 2885 reflections with I > 2σ(I)
  • R int = 0.019

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043
  • wR(F 2) = 0.139
  • S = 1.06
  • 3705 reflections
  • 293 parameters
  • H-atom parameters constrained
  • Δρmax = 0.73 e Å−3
  • Δρmin = −0.45 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT-Plus (Bruker, 2001 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: XP (Sheldrick, 1998 [triangle]); software used to prepare material for publication: XP.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809003316/cv2514sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809003316/cv2514Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Schiff bases play an important role in the development of coordination chemistry as they readily form stable complexes with most of the transition metals, in which some could exhibit interesting properties (Yu et al., 2007; Ghosh et al., 2006; Singh et al., 2007; Nayak et al., 2006). Here, we report a new CuII complex based on the tetradentate Schiff-base ligand 6-bromo-2,3-diaminopyridine-N,N'-bis (3-methoxysalicylideneimine).

The geometry and labeling scheme for the crystal structure of the title complex are shown in Figure 1. The coordination sphere for the CuII ion in the title complex is a slightly distorted square planar, in which the four positions are occupied by two N atoms and two O atoms of the Schiff-base ligand. The mean deviation from the plane formed by the two N atoms, two O atoms and the Cu ion is only 0.0329 /A%, indicative of that these five atoms are nearly coplanar. The average bond lengths of Cu—N and Cu—O are 1.866 and 1.849 /A%, respectively, which are slightly shorter than the corresponding distances in aqua-(N,N'-ethylenebis(3-methoxysalicylaldiminato)-N,N',O,O')copper(II) (Saha, et al., 2007).

Experimental

The Schiff base ligand was synthesized by condensation 6-bromo-2,3-diaminopyridine and 2-hydroxy-3-methoxybenzaldehyde with the ratio 1:2 in ethanol. The synthesis of the title complex was carried out by reacting Cu(ClO4)2.6H2O, and the Schiff-base ligand (1:1, molar ratio) in methanol. After the stirring process was continued for about 30 min at room temperature, the mixture was filtered and the filtrate was allowed to partial evaporate in air for sevral days to produce crystals suitable for X-ray diffraction with a yield about 60%.

Refinement

All H atoms were geometrically positioned (C—H 0.93, 0.96 Å and O—H 0.82 Å), and were refined as riding, with Uiso(H) = 1.2-1.5Ueq(C, O).

Figures

Fig. 1.
View of the title compound with the atom-labelling scheme and displacement ellipsoids drawn at the 30% probability level. All H-atoms and the methanol molecule are omitted for clarity.

Crystal data

[Cu(C21H16BrN3O4)]·CH4OZ = 2
Mr = 549.86F(000) = 554
Triclinic, P1Dx = 1.723 Mg m3Dm = 1.723 Mg m3Dm measured by not measured
a = 7.4520 (8) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.5402 (13) ÅCell parameters from 1770 reflections
c = 12.9432 (14) Åθ = 3.0–24.5°
α = 104.345 (2)°µ = 2.96 mm1
β = 96.467 (2)°T = 293 K
γ = 96.531 (2)°Block, blue
V = 1059.9 (2) Å30.15 × 0.13 × 0.11 mm

Data collection

Bruker APEXII CCD area-detector diffractometer3705 independent reflections
Radiation source: fine-focus sealed tube2885 reflections with I > 2σ(I)
graphiteRint = 0.019
[var phi] and ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Sheldrick, 2003)h = −8→8
Tmin = 0.665, Tmax = 0.737k = −13→9
5332 measured reflectionsl = −15→15

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.139H-atom parameters constrained
S = 1.06w = 1/[σ2(Fo2) + (0.0831P)2 + 0.2066P] where P = (Fo2 + 2Fc2)/3
3705 reflections(Δ/σ)max = 0.001
293 parametersΔρmax = 0.73 e Å3
0 restraintsΔρmin = −0.45 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu10.36241 (7)−0.01108 (4)0.60230 (4)0.03577 (19)
Br10.23295 (10)−0.51353 (5)0.16747 (4)0.0761 (3)
O10.2903 (4)0.1323 (3)0.5995 (2)0.0383 (7)
O20.2316 (5)0.3501 (3)0.6365 (3)0.0485 (8)
O30.4745 (4)0.0684 (3)0.7448 (2)0.0405 (7)
O40.6350 (5)0.2207 (3)0.9307 (3)0.0634 (10)
O50.1419 (5)0.2035 (3)0.8114 (3)0.0625 (10)
H50.20140.19450.76120.075*
N10.4117 (5)−0.3542 (3)0.4995 (3)0.0425 (9)
N20.4290 (4)−0.1555 (3)0.6099 (3)0.0332 (8)
N30.2583 (4)−0.0873 (3)0.4554 (3)0.0314 (7)
C10.3764 (5)−0.2447 (4)0.5091 (3)0.0360 (9)
C20.2886 (5)−0.2069 (3)0.4228 (3)0.0334 (9)
C30.2440 (6)−0.2854 (4)0.3183 (4)0.0451 (11)
H30.1896−0.26130.26030.054*
C40.2859 (6)−0.3987 (4)0.3081 (4)0.0450 (11)
C50.3641 (6)−0.4313 (4)0.3988 (4)0.0465 (11)
H5A0.3850−0.51090.38960.056*
C60.1301 (5)0.0772 (4)0.4117 (3)0.0359 (9)
C70.1961 (5)0.1589 (4)0.5164 (3)0.0342 (9)
C80.1615 (6)0.2776 (4)0.5331 (4)0.0397 (10)
C90.0664 (6)0.3116 (4)0.4483 (4)0.0478 (12)
H90.04520.39130.45970.057*
C100.0008 (6)0.2296 (5)0.3456 (4)0.0501 (12)
H10−0.06190.25640.29190.060*
C110.0288 (6)0.1147 (4)0.3262 (4)0.0443 (11)
H11−0.01530.06020.25980.053*
C120.1635 (5)−0.0414 (4)0.3872 (3)0.0366 (10)
H120.1166−0.09130.31910.044*
C130.2030 (8)0.4705 (4)0.6604 (4)0.0583 (14)
H13A0.25750.50960.61170.087*
H13B0.25760.51080.73310.087*
H13C0.07430.47410.65270.087*
C140.5858 (6)−0.0953 (4)0.7995 (3)0.0379 (10)
C150.5660 (6)0.0254 (4)0.8168 (3)0.0372 (10)
C160.6525 (6)0.1045 (4)0.9197 (4)0.0446 (11)
C170.7470 (7)0.0636 (5)1.0005 (4)0.0547 (13)
H170.79980.11771.06570.066*
C180.7609 (7)−0.0570 (5)0.9823 (4)0.0546 (13)
H180.8209−0.08591.03560.066*
C190.6857 (7)−0.1340 (5)0.8852 (4)0.0501 (12)
H190.6988−0.21520.87310.060*
C200.5175 (6)−0.1781 (4)0.6964 (3)0.0380 (10)
H200.5376−0.25760.68900.046*
C210.7138 (11)0.3026 (5)1.0320 (5)0.088 (2)
H21A0.65890.27931.08880.132*
H21B0.69270.38311.03160.132*
H21C0.84280.30061.04350.132*
C220.2129 (10)0.3101 (5)0.8876 (5)0.0784 (18)
H22A0.26490.29250.95230.118*
H22B0.11750.35820.90320.118*
H22C0.30600.35380.86040.118*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.0395 (3)0.0311 (3)0.0352 (3)0.0046 (2)0.0021 (2)0.0076 (2)
Br10.1168 (6)0.0451 (3)0.0517 (4)0.0169 (3)−0.0020 (3)−0.0105 (3)
O10.0485 (17)0.0308 (15)0.0337 (15)0.0054 (13)−0.0022 (13)0.0085 (12)
O20.066 (2)0.0302 (16)0.0483 (19)0.0142 (15)0.0021 (16)0.0084 (14)
O30.0484 (17)0.0341 (16)0.0364 (16)0.0062 (13)−0.0035 (14)0.0086 (13)
O40.092 (3)0.039 (2)0.047 (2)0.0006 (18)−0.0166 (19)0.0059 (16)
O50.071 (2)0.062 (2)0.048 (2)0.0059 (19)0.0110 (18)0.0016 (18)
N10.045 (2)0.032 (2)0.050 (2)0.0079 (16)0.0042 (18)0.0097 (18)
N20.0338 (18)0.0295 (18)0.0352 (19)0.0026 (14)0.0053 (15)0.0074 (15)
N30.0306 (17)0.0291 (18)0.0335 (18)0.0022 (14)0.0043 (14)0.0078 (15)
C10.032 (2)0.035 (2)0.039 (2)0.0020 (18)0.0081 (18)0.0070 (19)
C20.033 (2)0.028 (2)0.036 (2)−0.0014 (17)0.0079 (18)0.0032 (18)
C30.050 (3)0.038 (3)0.045 (3)0.007 (2)0.002 (2)0.007 (2)
C40.054 (3)0.034 (2)0.039 (2)0.006 (2)0.007 (2)−0.003 (2)
C50.051 (3)0.034 (2)0.054 (3)0.011 (2)0.014 (2)0.006 (2)
C60.030 (2)0.043 (3)0.037 (2)0.0034 (18)0.0054 (18)0.017 (2)
C70.032 (2)0.034 (2)0.039 (2)0.0039 (17)0.0082 (18)0.0132 (19)
C80.038 (2)0.039 (2)0.043 (3)0.0040 (19)0.005 (2)0.014 (2)
C90.045 (3)0.048 (3)0.059 (3)0.015 (2)0.009 (2)0.024 (2)
C100.047 (3)0.059 (3)0.050 (3)0.015 (2)−0.002 (2)0.026 (3)
C110.040 (2)0.051 (3)0.041 (3)0.005 (2)0.001 (2)0.015 (2)
C120.035 (2)0.040 (2)0.033 (2)−0.0013 (18)0.0057 (18)0.0082 (19)
C130.077 (4)0.034 (3)0.066 (3)0.015 (2)0.011 (3)0.014 (2)
C140.037 (2)0.043 (3)0.036 (2)0.0122 (19)0.0084 (19)0.011 (2)
C150.037 (2)0.041 (2)0.035 (2)0.0035 (18)0.0057 (18)0.0137 (19)
C160.046 (3)0.045 (3)0.040 (3)0.002 (2)0.000 (2)0.010 (2)
C170.053 (3)0.065 (3)0.040 (3)0.001 (2)−0.005 (2)0.011 (2)
C180.063 (3)0.059 (3)0.042 (3)0.020 (3)−0.007 (2)0.017 (2)
C190.057 (3)0.052 (3)0.049 (3)0.020 (2)0.006 (2)0.022 (2)
C200.040 (2)0.035 (2)0.043 (2)0.0151 (19)0.009 (2)0.014 (2)
C210.139 (6)0.042 (3)0.060 (4)−0.012 (3)−0.032 (4)0.002 (3)
C220.104 (5)0.064 (4)0.053 (3)0.016 (3)−0.008 (3)−0.004 (3)

Geometric parameters (Å, °)

Cu1—O11.805 (3)C7—C81.392 (6)
Cu1—N21.814 (3)C8—C91.400 (6)
Cu1—O31.893 (3)C9—C101.423 (7)
Cu1—N31.917 (3)C9—H90.9300
Br1—C41.936 (4)C10—C111.332 (6)
O1—C71.337 (5)C10—H100.9300
O2—C131.393 (5)C11—H110.9300
O2—C81.398 (5)C12—H120.9300
O3—C151.320 (5)C13—H13A0.9600
O4—C161.335 (6)C13—H13B0.9600
O4—C211.430 (6)C13—H13C0.9600
O5—C221.378 (6)C14—C151.382 (6)
O5—H50.8200C14—C201.434 (6)
N1—C11.298 (5)C14—C191.456 (6)
N1—C51.366 (6)C15—C161.447 (6)
N2—C201.331 (5)C16—C171.402 (6)
N2—C11.430 (5)C17—C181.371 (7)
N3—C121.317 (5)C17—H170.9300
N3—C21.392 (5)C18—C191.364 (7)
C1—C21.417 (6)C18—H180.9300
C2—C31.408 (6)C19—H190.9300
C3—C41.356 (6)C20—H200.9300
C3—H30.9300C21—H21A0.9600
C4—C51.405 (7)C21—H21B0.9600
C5—H5A0.9300C21—H21C0.9600
C6—C121.385 (6)C22—H22A0.9600
C6—C71.441 (6)C22—H22B0.9600
C6—C111.451 (6)C22—H22C0.9600
O1—Cu1—N2177.45 (14)C9—C10—H10119.9
O1—Cu1—O385.51 (12)C10—C11—C6118.1 (4)
N2—Cu1—O393.31 (13)C10—C11—H11121.0
O1—Cu1—N393.72 (13)C6—C11—H11121.0
N2—Cu1—N387.57 (14)N3—C12—C6123.4 (4)
O3—Cu1—N3177.17 (13)N3—C12—H12118.3
C7—O1—Cu1127.0 (3)C6—C12—H12118.3
C13—O2—C8117.2 (4)O2—C13—H13A109.5
C15—O3—Cu1129.7 (3)O2—C13—H13B109.5
C16—O4—C21116.2 (4)H13A—C13—H13B109.5
C22—O5—H5109.5O2—C13—H13C109.5
C1—N1—C5115.7 (4)H13A—C13—H13C109.5
C20—N2—C1123.0 (3)H13B—C13—H13C109.5
C20—N2—Cu1125.7 (3)C15—C14—C20119.8 (4)
C1—N2—Cu1111.3 (3)C15—C14—C19118.7 (4)
C12—N3—C2119.4 (3)C20—C14—C19121.3 (4)
C12—N3—Cu1128.3 (3)O3—C15—C14123.0 (4)
C2—N3—Cu1112.3 (3)O3—C15—C16120.7 (4)
N1—C1—C2123.0 (4)C14—C15—C16116.2 (4)
N1—C1—N2120.0 (4)O4—C16—C17122.9 (4)
C2—C1—N2116.9 (4)O4—C16—C15113.8 (4)
N3—C2—C3127.0 (4)C17—C16—C15123.3 (4)
N3—C2—C1111.8 (3)C18—C17—C16119.3 (5)
C3—C2—C1121.3 (4)C18—C17—H17120.3
C4—C3—C2115.3 (4)C16—C17—H17120.3
C4—C3—H3122.4C19—C18—C17119.1 (4)
C2—C3—H3122.4C19—C18—H18120.4
C3—C4—C5120.1 (4)C17—C18—H18120.4
C3—C4—Br1118.7 (4)C18—C19—C14123.2 (4)
C5—C4—Br1121.2 (3)C18—C19—H19118.4
N1—C5—C4124.5 (4)C14—C19—H19118.4
N1—C5—H5A117.7N2—C20—C14128.2 (4)
C4—C5—H5A117.7N2—C20—H20115.9
C12—C6—C7121.2 (4)C14—C20—H20115.9
C12—C6—C11116.5 (4)O4—C21—H21A109.5
C7—C6—C11122.3 (4)O4—C21—H21B109.5
O1—C7—C8116.2 (4)H21A—C21—H21B109.5
O1—C7—C6126.3 (4)O4—C21—H21C109.5
C8—C7—C6117.5 (4)H21A—C21—H21C109.5
C7—C8—O2113.3 (4)H21B—C21—H21C109.5
C7—C8—C9118.9 (4)O5—C22—H22A109.5
O2—C8—C9127.8 (4)O5—C22—H22B109.5
C8—C9—C10123.0 (4)H22A—C22—H22B109.5
C8—C9—H9118.5O5—C22—H22C109.5
C10—C9—H9118.5H22A—C22—H22C109.5
C11—C10—C9120.3 (4)H22B—C22—H22C109.5
C11—C10—H10119.9

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O5—H5···O10.822.243.033 (5)163
O5—H5···O30.822.633.165 (5)124

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2514).

References

  • Bruker (2001). SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2004). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  • Ghosh, R., Rahaman, S. H., Lin, C. N., Lu, T. H. & Ghosh, B. K. (2006). Polyhedron, 25, 3104–3112.
  • Nayak, M., Koner, R., Lin, H. H., Flörke, U., Wei, H. H. & Mohanta, S. (2006). Inorg. Chem.45, 10764–10773. [PubMed]
  • Saha, P. K., Dutta, B., Jana, S., Bera, R., Saha, S., Okamoto, K. & Koner, S. (2007). Polyhedron, 26, 563–571.
  • Sheldrick, G. M. (1998). XP Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (2003). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Singh, K., Barwa, M. S. & Tyagi, P. (2007). Eur. J. Med. Chem.42, 394–402. [PubMed]
  • Yu, T. Z., Zhang, K., Zhao, Y. L., Yang, C. H., Zhang, H., Fan, D. W. & Dong, W. K. (2007). Inorg. Chem. Commun.10, 401–403.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography