PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 March 1; 65(Pt 3): o519.
Published online 2009 February 13. doi:  10.1107/S1600536809004747
PMCID: PMC2968673

1-(4-Fluoro­phen­yl)-3-hydr­oxy-3-phenyl­prop-2-en-1-one

Abstract

In the crystal structure the title compound, C15H11FO2, the molecule exists in the enol form. It is stabilized by an intra­molecular O—H(...)O hydrogen bond, in which the donor O—H and acceptor H(...)O distances are almost equal. The dihedral angle between the two benzene rings is 22.30 (4)°.

Related literature

For background to the uses and characteristics of 1,3-diketones, see: Gilli et al. (2004 [triangle]); Hasegawa et al. (1997 [triangle]); Jang et al. (2006 [triangle]); Ma et al. (1999 [triangle]); Yoshida et al. (2005 [triangle]). For geometric data, see: Bertolasi et al. (1991 [triangle]); Wang et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o519-scheme1.jpg

Experimental

Crystal data

  • C15H11FO2
  • M r = 242.24
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o519-efi1.jpg
  • a = 11.8526 (5) Å
  • b = 11.7192 (5) Å
  • c = 9.4164 (4) Å
  • β = 113.405 (1)°
  • V = 1200.35 (9) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 298 K
  • 0.30 × 0.10 × 0.04 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.991, T max = 0.996
  • 11206 measured reflections
  • 2109 independent reflections
  • 1295 reflections with I > 2σ(I)
  • R int = 0.106

Refinement

  • R[F 2 > 2σ(F 2)] = 0.051
  • wR(F 2) = 0.140
  • S = 0.93
  • 2109 reflections
  • 166 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.25 e Å−3
  • Δρmin = −0.19 e Å−3

Data collection: SMART (Bruker, 1997 [triangle]); cell refinement: SAINT (Bruker, 1999 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809004747/kj2112sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809004747/kj2112Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful to Hubei Normal University for financial support.

supplementary crystallographic information

Comment

1,3-Diketones posses a broad spectrum of useful and sometimes unique chemical properties, which make them extremely attractive as intermediates in syntheses (Hasegawa et al., 1997). They are also used in the chemistry of metallocomplexes (Ma et al., 1999; Yoshida et al., 2005; Jang et al., 2006). 1,3-Diketone structures have received increasing attention due to their enolic tautomeric forms and their ability to form strong intermolecular or intramolecular hydrogen bonds (Gilli et al., 2004). The crystal structure of the title compound (Fig. 1) is in the enol form, stabilized by an intramolecular hydrogen bond (Table 2). The bond lengths in the diketone fragment are either significantly shorter than normal single bonds or significantly longer than normal double bonds (Table 1). This shows that the structure displays a strong delocalization of double bonds in this region. The geometric data are in agreement with reported literature values (Bertolasi et al., 1991; Wang et al., 2006). The dihedral angle between the two aromatic rings is 22.30 (4)°.

Experimental

1-(4-Fluorophenyl)ethanone (1.38 g, 0.01 mol), ethyl benzoate (1.50 g, 0.01 mol), NaNH2 (0.78 g, 0.02 mol) and dry ether (40 ml) were placed in a round bottom flask. The mixture was stirred 6 h at room temperature under a blanket of nitrogen, acidified with dilute hydrochloric acid, and stirring was continued until all solids dissolved. The ether layer was separated and washed with saturated NaHCO3 solution, dried over anhydrous Na2SO4 and the solvent was removed by evaporation. The residual solid was recrystallized from an ethanol solution to give the title compound (yield 1.27 g, 52.4%, m.p. 351 K). Crystals suitable for X-ray diffraction were grown by slow evaporation of CHCl2–EtOH (1:5) solutions at room temperature.

Refinement

The H atom of the hydroxyl group was located in a difference Fourier map and its position was refined freely, with Uiso(H) = 1.5 Uiso(O). The other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.93 to 0.97 Å, and with Uiso(H) = 1.2 Ueq(C).

Figures

Fig. 1.
View of the title compound, showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Crystal data

C15H11FO2F(000) = 504
Mr = 242.24Dx = 1.340 Mg m3
Monoclinic, P21/cMelting point: 351 K
Hall symbol: -P2ybcMo Kα radiation, λ = 0.71073 Å
a = 11.8526 (5) ÅCell parameters from 2616 reflections
b = 11.7192 (5) Åθ = 2.6–22.7°
c = 9.4164 (4) ŵ = 0.10 mm1
β = 113.405 (1)°T = 298 K
V = 1200.35 (9) Å3Plate, colourless
Z = 40.30 × 0.10 × 0.04 mm

Data collection

Bruker SMART CCD area-detector diffractometer2109 independent reflections
Radiation source: fine-focus sealed tube1295 reflections with I > 2σ(I)
graphiteRint = 0.106
[var phi] and ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −14→14
Tmin = 0.991, Tmax = 0.996k = −13→13
11206 measured reflectionsl = −11→11

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.140H atoms treated by a mixture of independent and constrained refinement
S = 0.93w = 1/[σ2(Fo2) + (0.0849P)2] where P = (Fo2 + 2Fc2)/3
2109 reflections(Δ/σ)max < 0.001
166 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = −0.19 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.27135 (19)0.29172 (18)0.4883 (2)0.0742 (6)
C20.29882 (19)0.17926 (17)0.4841 (2)0.0804 (6)
H20.25650.12360.51360.096*
C30.38951 (19)0.14902 (16)0.4358 (2)0.0753 (6)
H30.40820.07220.43290.090*
C40.45487 (16)0.23125 (14)0.39078 (19)0.0600 (5)
C50.42305 (18)0.34513 (15)0.3965 (2)0.0694 (6)
H50.46450.40180.36730.083*
C60.33131 (19)0.37574 (17)0.4446 (2)0.0781 (6)
H60.31060.45200.44730.094*
C70.55320 (17)0.19568 (14)0.3396 (2)0.0634 (5)
C80.63154 (16)0.27122 (14)0.3102 (2)0.0627 (5)
H80.62200.34910.32080.075*
C90.72513 (17)0.23318 (15)0.2648 (2)0.0664 (5)
C100.81581 (16)0.30949 (15)0.2408 (2)0.0635 (5)
C110.8874 (2)0.26895 (18)0.1647 (2)0.0811 (6)
H110.87780.19410.12910.097*
C120.9732 (2)0.3393 (2)0.1414 (3)0.0959 (7)
H121.01900.31160.08830.115*
C130.99055 (19)0.4487 (2)0.1958 (3)0.0909 (7)
H131.04860.49520.18110.109*
C140.92093 (19)0.48972 (18)0.2731 (2)0.0901 (7)
H140.93290.56390.31120.108*
C150.83398 (19)0.42134 (17)0.2941 (2)0.0781 (6)
H150.78690.45050.34450.094*
F10.18286 (12)0.32154 (11)0.53824 (16)0.1081 (5)
O10.56461 (14)0.08669 (11)0.32400 (18)0.0923 (5)
O20.73642 (15)0.12538 (11)0.24314 (19)0.0931 (5)
H2A0.650 (2)0.087 (2)0.270 (3)0.140*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0767 (13)0.0819 (14)0.0718 (13)−0.0013 (11)0.0378 (11)0.0039 (10)
C20.0866 (15)0.0725 (14)0.0856 (15)−0.0167 (11)0.0379 (12)0.0098 (11)
C30.0870 (14)0.0523 (12)0.0853 (14)−0.0058 (10)0.0329 (12)0.0056 (9)
C40.0695 (11)0.0483 (10)0.0548 (11)−0.0051 (8)0.0170 (9)0.0040 (8)
C50.0849 (14)0.0483 (11)0.0837 (14)−0.0008 (9)0.0428 (11)0.0040 (9)
C60.0959 (15)0.0591 (12)0.0938 (15)0.0021 (10)0.0530 (13)0.0009 (10)
C70.0750 (12)0.0442 (10)0.0667 (12)0.0046 (9)0.0235 (10)0.0011 (8)
C80.0714 (12)0.0430 (10)0.0733 (12)0.0053 (8)0.0284 (10)−0.0035 (8)
C90.0777 (13)0.0523 (11)0.0640 (12)0.0101 (9)0.0227 (10)−0.0037 (9)
C100.0660 (12)0.0605 (12)0.0621 (11)0.0125 (9)0.0236 (9)−0.0006 (9)
C110.0863 (14)0.0781 (14)0.0830 (15)0.0148 (12)0.0380 (12)−0.0110 (11)
C120.0910 (16)0.114 (2)0.0986 (18)0.0141 (14)0.0549 (15)−0.0037 (14)
C130.0850 (15)0.0948 (17)0.0980 (17)0.0036 (13)0.0418 (14)0.0061 (13)
C140.0968 (15)0.0715 (13)0.1198 (19)−0.0030 (11)0.0617 (15)−0.0042 (12)
C150.0875 (14)0.0619 (12)0.1025 (16)0.0039 (10)0.0562 (13)−0.0060 (11)
F10.1104 (10)0.1162 (11)0.1240 (11)−0.0001 (8)0.0742 (9)0.0031 (8)
O10.1175 (12)0.0406 (8)0.1328 (13)0.0027 (7)0.0647 (10)−0.0009 (7)
O20.1094 (12)0.0522 (8)0.1332 (13)0.0088 (7)0.0645 (11)−0.0136 (8)

Geometric parameters (Å, °)

C1—F11.354 (2)C8—H80.9300
C1—C21.362 (3)C9—C101.483 (3)
C1—C61.370 (3)C10—C151.389 (3)
C2—C31.369 (3)C10—C111.393 (3)
C2—H20.9300C11—C121.393 (3)
C3—C41.404 (3)C11—H110.9300
C3—H30.9300C12—C131.365 (3)
C4—C51.394 (2)C12—H120.9300
C4—C71.487 (3)C13—C141.386 (3)
C5—C61.381 (3)C13—H130.9300
C5—H50.9300C14—C151.380 (3)
C6—H60.9300C14—H140.9300
O1—C71.299 (2)C15—H150.9300
O2—C91.295 (2)O1—H2A1.30 (3)
C7—C81.388 (2)O2—H2A1.23 (3)
C8—C91.410 (3)
F1—C1—C2119.14 (18)O2—C9—C8119.94 (18)
F1—C1—C6118.98 (18)O2—C9—C10115.95 (17)
C2—C1—C6121.88 (18)C8—C9—C10124.11 (16)
C1—C2—C3119.24 (18)C15—C10—C11117.95 (18)
C1—C2—H2120.4C15—C10—C9122.10 (16)
C3—C2—H2120.4C11—C10—C9119.94 (17)
C2—C3—C4121.53 (19)C12—C11—C10120.73 (19)
C2—C3—H3119.2C12—C11—H11119.6
C4—C3—H3119.2C10—C11—H11119.6
C5—C4—C3117.09 (18)C13—C12—C11120.5 (2)
C5—C4—C7122.68 (16)C13—C12—H12119.8
C3—C4—C7120.22 (17)C11—C12—H12119.8
C6—C5—C4121.45 (18)C12—C13—C14119.4 (2)
C6—C5—H5119.3C12—C13—H13120.3
C4—C5—H5119.3C14—C13—H13120.3
C1—C6—C5118.82 (18)C15—C14—C13120.5 (2)
C1—C6—H6120.6C15—C14—H14119.7
C5—C6—H6120.6C13—C14—H14119.7
O1—C7—C8119.79 (17)C14—C15—C10120.90 (18)
O1—C7—C4116.27 (16)C14—C15—H15119.5
C8—C7—C4123.94 (15)C10—C15—H15119.5
C7—C8—C9121.86 (16)C7—O1—H2A99.8 (11)
C7—C8—H8119.1C9—O2—H2A100.1 (12)
C9—C8—H8119.1
F1—C1—C2—C3−179.05 (18)C4—C7—C8—C9178.70 (16)
C6—C1—C2—C30.5 (3)C7—C8—C9—O22.9 (3)
C1—C2—C3—C40.0 (3)C7—C8—C9—C10−176.33 (17)
C2—C3—C4—C5−0.3 (3)O2—C9—C10—C15−164.43 (17)
C2—C3—C4—C7179.74 (17)C8—C9—C10—C1514.9 (3)
C3—C4—C5—C60.1 (3)O2—C9—C10—C1114.5 (3)
C7—C4—C5—C6−179.97 (17)C8—C9—C10—C11−166.16 (17)
F1—C1—C6—C5178.82 (17)C15—C10—C11—C12−0.8 (3)
C2—C1—C6—C5−0.7 (3)C9—C10—C11—C12−179.86 (19)
C4—C5—C6—C10.4 (3)C10—C11—C12—C131.5 (3)
C5—C4—C7—O1−172.91 (17)C11—C12—C13—C14−0.8 (4)
C3—C4—C7—O17.0 (2)C12—C13—C14—C15−0.6 (4)
C5—C4—C7—C87.8 (3)C13—C14—C15—C101.2 (3)
C3—C4—C7—C8−172.31 (18)C11—C10—C15—C14−0.5 (3)
O1—C7—C8—C9−0.6 (3)C9—C10—C15—C14178.53 (19)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O2—H2A···O11.23 (3)1.30 (3)2.4827 (19)157 (2)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KJ2112).

References

  • Bertolasi, V., Gilli, P., Ferretti, V. & Gilli, G. (1991). J. Am. Chem. Soc.113, 4917–4925.
  • Bruker (1997). SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (1999). SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Gilli, P., Bertolasi, V., Pretto, L., Ferretti, V. & Gilli, G. (2004). J. Am. Chem. Soc.126, 3845–3855. [PubMed]
  • Hasegawa, E., Ishiyama, K., Fujita, T., Kato, T. & Abe, T. (1997). J. Org. Chem.62, 2396–2400. [PubMed]
  • Jang, H., Shin, C. H., Jung, B. J., Kim, D. H., Shim, H. K. & Do, Y. (2006). Eur. J. Inorg. Chem.4, 718–725.
  • Ma, Y. L., Reardon, D., Gambarotta, S. & Yap, G. (1999). Organometallics, 18, 2773–2781.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wang, D.-J., Zheng, C.-Y. & Fan, L. (2006). Acta Cryst. E62, o3681–o3682.
  • Yoshida, J., Sato, H., Yamagishi, A. & Hoshino, N. (2005). J. Am. Chem. Soc.127, 8453–8456. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography