PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 March 1; 65(Pt 3): o583.
Published online 2009 February 25. doi:  10.1107/S1600536809005807
PMCID: PMC2968669

1-(2,6-Dichloro­phen­yl)indolin-2-one

Abstract

In the mol­ecule of the title compound, C14H9Cl2NO, the planar indole ring system [with a maximum deviation of 0.020 (2) Å for the N atom] is oriented at a dihedral angle of 72.17 (3)° with respect to the phenyl ring. In the crystal structure, weak inter­molecular C—H(...)O hydrogen bonds link the mol­ecules. A weak C—H(...)π inter­action may further stabilize the structure.

Related literature

For general background, see: Hibino & Choshi (2002 [triangle]); Somei & Yamada (2003 [triangle]); Popp (1977 [triangle], 1984 [triangle]). For related structures, see: Chakraborty & Talapatra (1985 [triangle]); Chakraborty et al. (1985 [triangle]); De (1992 [triangle]); De & Kitagawa (1991a [triangle],b [triangle]); Itai et al. (1978 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o583-scheme1.jpg

Experimental

Crystal data

  • C14H9Cl2NO
  • M r = 278.12
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o583-efi1.jpg
  • a = 7.1412 (8) Å
  • b = 8.0241 (9) Å
  • c = 11.0510 (13) Å
  • β = 105.789 (2)°
  • V = 609.35 (12) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.52 mm−1
  • T = 173 K
  • 0.30 × 0.24 × 0.20 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2001 [triangle]) T min = 0.755, T max = 0.902
  • 3710 measured reflections
  • 2328 independent reflections
  • 2295 reflections with I > 2σ(I)
  • R int = 0.014

Refinement

  • R[F 2 > 2σ(F 2)] = 0.021
  • wR(F 2) = 0.060
  • S = 1.06
  • 2328 reflections
  • 163 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.19 e Å−3
  • Δρmin = −0.16 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 705 Friedel pairs
  • Flack parameter: −0.02 (4)

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT (Bruker, 2002 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008 [triangle]) and PLATON.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809005807/hk2625sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809005807/hk2625Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors gratefully acknowledge the financial support of the Higher Education Commission, Islamabad, Pakistan.

supplementary crystallographic information

Comment

Indolinones are a class of heterocyclic compounds found in many natural products and in a number of marketed drugs (Hibino & Choshi, 2002; Somei & Yamada, 2003). They have diverse chemical structures and complex physiological and pharmacological actions. The search for potential drugs and their mechanism of action has been difficult because of their complexity. These compounds contain both oxoindole and dioxolane moieties which have independently been seen in other anticonvulsants (Popp, 1977, 1984). The title compound, a chloro analogue, was found to be most potent in the MES test. Since no common target site has yet been established, X-ray analysis was undertaken to search its crystal structure, which may help to understand the mechanism of action at the molecular level.

In the title compound (Fig. 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. Rings A (C1-C6), B (N1/C7-C10) and C (C9-C14) are, of course, planar and the dihedral angles between them are A/B = 71.73 (3)°, A/C = 72.43 (3)° and B/C = 1.07 (3)°. So, rings B and C are nearly coplanar. Ring A is oriented with respect to the planar indole ring system at a dihedral angle of 72.17 (3)°. The C8-C9 [1.4955 (19) Å] bond length may be compared with the corresponding values in other indoline nuclei (Itai et al., 1978; Chakraborty & Talapatra, 1985; Chakraborty et al., 1985; De & Kitagawa, 1991a,b; De, 1992).

In the crystal structure, weak intermolecular C-H···O hydrogen bonds (Table 1) link the molecules (Fig. 2), in which they may be effective in the stabilization of the structure. The weak C—H···π interaction (Table 1) may further stabilize the structure.

Experimental

For the preparation of the title compound, sodium salt of 2-(2-(2,6-dichloro- phenylamino)phenyl)acetate (3.18 g, 10 mmol) was dissolved in distilled water (50 ml) and heated on a hot plate, until a homogeneous solution obtained, and then filtered to remove the undissolved product. It was poured into concentrated hydrochloric acid (5 ml) diluted with ice water (25 ml) in an Erlenmeyer flask to obtain 2-(2-(2,6-dichlorophenylamino)phenyl)acetic acid. Then, it was stand for 15 min in an ice bath. The crude product was separated and recrystallized in ethanol. 2-(2-(2,6-dichlorophenylamino)phenyl)acetic acid (2.96 g, 10 mmol) was refluxed in methanol (50 ml) in catalytic amount of sulfuric acid. As soon as a methyl ester is formed, it is cyclized to form the title compound, which was recrystallized in ethanol (yield; 79%; m.p. 420-421 K).

Refinement

H atoms were positioned geometrically, with C-H = 0.95 and 0.99 Å for aromatic, and methylene H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The molecular structure of the title molecule, with the atom-numbering scheme.
Fig. 2.
A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.
Fig. 3.
The formation of the title compound.

Crystal data

C14H9Cl2NOF(000) = 284
Mr = 278.12Dx = 1.516 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 2148 reflections
a = 7.1412 (8) Åθ = 5.2–24.3°
b = 8.0241 (9) ŵ = 0.52 mm1
c = 11.0510 (13) ÅT = 173 K
β = 105.789 (2)°Block, yellow
V = 609.35 (12) Å30.30 × 0.24 × 0.20 mm
Z = 2

Data collection

Bruker SMART CCD area-detector diffractometer2328 independent reflections
Radiation source: fine-focus sealed tube2295 reflections with I > 2σ(I)
graphiteRint = 0.014
ω and [var phi] scansθmax = 28.3°, θmin = 3.1°
Absorption correction: multi-scan (SADABS; Bruker, 2001)h = −9→9
Tmin = 0.755, Tmax = 0.902k = −9→10
3710 measured reflectionsl = −14→11

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.021H-atom parameters constrained
wR(F2) = 0.060w = 1/[σ2(Fo2) + (0.0379P)2 + 0.0681P] where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
2328 reflectionsΔρmax = 0.19 e Å3
163 parametersΔρmin = −0.16 e Å3
1 restraintAbsolute structure: Flack (1983), 705 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: −0.02 (4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.57381 (5)0.76042 (5)0.02255 (3)0.03458 (10)
Cl20.05095 (6)0.97960 (6)0.25885 (3)0.03843 (11)
O10.41005 (16)0.54202 (14)0.22865 (9)0.0304 (2)
N10.43177 (17)0.82839 (15)0.24614 (10)0.0230 (2)
C10.2984 (2)0.86900 (18)0.12903 (12)0.0224 (2)
C20.3471 (2)0.83882 (17)0.01693 (12)0.0243 (3)
C30.2172 (2)0.8739 (2)−0.09901 (13)0.0302 (3)
H3A0.25120.8509−0.17470.036*
C40.0386 (2)0.9425 (2)−0.10285 (13)0.0330 (3)
H4A−0.05070.9663−0.18190.040*
C5−0.0126 (2)0.9774 (2)0.00703 (14)0.0304 (3)
H5A−0.13501.02660.00360.036*
C60.1176 (2)0.93932 (19)0.12198 (12)0.0266 (3)
C70.48390 (19)0.66561 (18)0.28346 (12)0.0233 (3)
C80.6499 (2)0.67599 (18)0.40391 (12)0.0249 (3)
H8A0.61350.62230.47490.030*
H8B0.76880.62190.39290.030*
C90.6805 (2)0.85913 (18)0.42570 (12)0.0234 (3)
C100.54970 (19)0.94523 (17)0.32861 (11)0.0219 (2)
C110.5448 (2)1.11669 (19)0.32044 (13)0.0286 (3)
H11A0.45581.17310.25330.034*
C120.6774 (2)1.2032 (2)0.41607 (14)0.0335 (3)
H12A0.67831.32160.41380.040*
C130.8073 (2)1.1219 (2)0.51397 (15)0.0357 (3)
H13A0.89501.18460.57780.043*
C140.8101 (2)0.9477 (2)0.51951 (13)0.0310 (3)
H14A0.89940.89120.58650.037*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.03021 (17)0.0422 (2)0.03333 (16)0.00882 (15)0.01213 (12)−0.00025 (14)
Cl20.04088 (19)0.0480 (2)0.03094 (16)0.01679 (17)0.01741 (14)0.00795 (15)
O10.0330 (5)0.0230 (5)0.0309 (5)−0.0025 (4)0.0011 (4)−0.0026 (4)
N10.0249 (5)0.0208 (5)0.0204 (5)0.0012 (4)0.0010 (4)−0.0009 (4)
C10.0235 (6)0.0220 (6)0.0197 (5)0.0010 (5)0.0025 (5)0.0010 (4)
C20.0245 (6)0.0223 (6)0.0256 (6)0.0011 (5)0.0063 (5)−0.0021 (5)
C30.0358 (8)0.0322 (8)0.0206 (6)0.0009 (6)0.0043 (5)−0.0003 (5)
C40.0320 (7)0.0379 (8)0.0240 (6)0.0021 (6)−0.0012 (5)0.0041 (6)
C50.0242 (6)0.0343 (8)0.0303 (6)0.0058 (6)0.0035 (5)0.0062 (6)
C60.0274 (7)0.0276 (7)0.0251 (6)0.0031 (6)0.0077 (5)0.0034 (5)
C70.0216 (6)0.0239 (6)0.0229 (5)0.0004 (5)0.0037 (5)0.0007 (4)
C80.0235 (6)0.0236 (6)0.0241 (6)0.0037 (5)0.0006 (5)0.0007 (5)
C90.0224 (6)0.0244 (7)0.0226 (5)0.0010 (5)0.0049 (5)−0.0020 (5)
C100.0236 (6)0.0225 (6)0.0194 (5)−0.0006 (5)0.0055 (4)−0.0032 (4)
C110.0352 (8)0.0236 (7)0.0290 (6)0.0008 (6)0.0122 (6)0.0003 (5)
C120.0397 (8)0.0230 (7)0.0414 (7)−0.0057 (6)0.0173 (7)−0.0081 (6)
C130.0303 (8)0.0373 (8)0.0389 (8)−0.0068 (7)0.0085 (6)−0.0162 (6)
C140.0259 (7)0.0371 (8)0.0272 (6)−0.0002 (6)0.0023 (5)−0.0080 (5)

Geometric parameters (Å, °)

C1—C61.392 (2)C8—C91.4955 (19)
C1—C21.3958 (18)C8—H8A0.9900
C1—N11.4203 (15)C8—H8B0.9900
C2—C31.3908 (19)C9—C141.3834 (19)
C2—Cl11.7223 (14)C9—C101.3984 (18)
C3—C41.379 (2)C10—C111.379 (2)
C3—H3A0.9500C10—N11.4146 (16)
C4—C51.389 (2)C11—C121.397 (2)
C4—H4A0.9500C11—H11A0.9500
C5—C61.3890 (19)C12—C131.382 (2)
C5—H5A0.9500C12—H12A0.9500
C6—Cl21.7353 (14)C13—C141.399 (2)
C7—O11.2061 (17)C13—H13A0.9500
C7—N11.3896 (18)C14—H14A0.9500
C7—C81.5250 (17)
C6—C1—C2118.16 (12)C9—C8—H8B111.0
C6—C1—N1121.73 (12)C7—C8—H8B111.0
C2—C1—N1120.12 (12)H8A—C8—H8B109.0
C3—C2—C1121.19 (13)C14—C9—C10119.49 (14)
C3—C2—Cl1119.46 (11)C14—C9—C8131.59 (14)
C1—C2—Cl1119.34 (10)C10—C9—C8108.91 (12)
C4—C3—C2119.23 (13)C11—C10—C9122.89 (13)
C4—C3—H3A120.4C11—C10—N1128.25 (13)
C2—C3—H3A120.4C9—C10—N1108.86 (12)
C3—C4—C5121.01 (13)C10—C11—C12116.53 (14)
C3—C4—H4A119.5C10—C11—H11A121.7
C5—C4—H4A119.5C12—C11—H11A121.7
C4—C5—C6119.01 (14)C13—C12—C11121.99 (15)
C4—C5—H5A120.5C13—C12—H12A119.0
C6—C5—H5A120.5C11—C12—H12A119.0
C5—C6—C1121.38 (12)C12—C13—C14120.31 (14)
C5—C6—Cl2118.81 (11)C12—C13—H13A119.8
C1—C6—Cl2119.81 (10)C14—C13—H13A119.8
O1—C7—N1125.35 (11)C9—C14—C13118.77 (14)
O1—C7—C8127.81 (13)C9—C14—H14A120.6
N1—C7—C8106.83 (11)C13—C14—H14A120.6
C9—C8—C7103.83 (11)C7—N1—C10111.54 (10)
C9—C8—H8A111.0C7—N1—C1123.04 (11)
C7—C8—H8A111.0C10—N1—C1124.68 (11)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C4—H4A···O1i0.952.553.2267 (19)128
C8—H8A···Cg1ii0.992.743.6125 (23)147

Symmetry codes: (i) −x, y+1/2, −z; (ii) −x+1, y−1/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2625).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bruker (2001). SMART and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2002). SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chakraborty, D. K. & Talapatra, S. K. (1985). Acta Cryst. C41, 1365–1366.
  • Chakraborty, D. K., Talapatra, S. K. & Chatterjee, A. (1985). Acta Cryst. C41, 1363–1364.
  • De, A. (1992). Acta Cryst. C48, 660–662.
  • De, A. & Kitagawa, Y. (1991a). Acta Cryst. C47, 2179–2181.
  • De, A. & Kitagawa, Y. (1991b). Acta Cryst. C47, 2384–2386.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Hibino, S. & Choshi, T. (2002). Nat. Prod. Rep 19, 148–180. [PubMed]
  • Itai, A., Iitaka, Y. & Kubo, A. (1978). Acta Cryst. B34, 3775–3777.
  • Popp, F. D. (1977). In Anticonvulsants, edited by J. A. Vida. New York: Academic Press.
  • Popp, F. D. (1984). J. Heterocycl. Chem 21, 1641–1643.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Somei, M. & Yamada, F. (2003). Nat. Prod. Rep.20, 216–242. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography