PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 March 1; 65(Pt 3): o457.
Published online 2009 February 4. doi:  10.1107/S160053680900364X
PMCID: PMC2968667

4-[2-(4-Fluoro­phen­yl)-1H-pyrrol-3-yl]pyridine

Abstract

In the crystal structure of the title compound, C15H11FN2, the pyrrole ring makes dihedral angles of 33.19 (9) and 36.33 (10)° with the pyridine and 4-fluoro­phenyl rings, respectively. The pyridine ring makes a dihedral angle of 46.59 (9)° with the 4-fluoro­phenyl ring. In the crystal structure, an N—H(...)N hydrogen bond joins the mol­ecules into chains.

Related literature

Many 1-(4-fluoro­phenyl)-2-(pyridin-4-yl)pyrrol derivatives have been prepared and their biological activities studied; see: de Laszlo et al. (1998 [triangle]); Revesz et al. (2000 [triangle], 2002 [triangle]); Qian et al. (2006 [triangle]). For the synthesis of the title compound, see: Qian et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o457-scheme1.jpg

Experimental

Crystal data

  • C15H11FN2
  • M r = 238.26
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o457-efi1.jpg
  • a = 9.2966 (7) Å
  • b = 8.1966 (5) Å
  • c = 30.5738 (19) Å
  • V = 2329.7 (3) Å3
  • Z = 8
  • Cu Kα radiation
  • μ = 0.76 mm−1
  • T = 193 (2) K
  • 0.25 × 0.20 × 0.18 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: none
  • 2175 measured reflections
  • 2175 independent reflections
  • 1744 reflections with I > 2σ(I)
  • 3 standard reflections frequency: 60 min intensity decay: 2%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042
  • wR(F 2) = 0.120
  • S = 1.03
  • 2175 reflections
  • 164 parameters
  • H-atom parameters constrained
  • Δρmax = 0.26 e Å−3
  • Δρmin = −0.17 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989 [triangle]); cell refinement: CAD-4 Software; data reduction: CORINC (Dräger & Gattow, 1971 [triangle]); program(s) used to solve structure: SIR97 (Altomare et al., 1999 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2003 [triangle]); software used to prepare material for publication: PLATON.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680900364X/bt2858sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680900364X/bt2858Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Alexander von Humbolt Foundation (AvH) for funding.

supplementary crystallographic information

Comment

Functionalized 1-(4-fluorophenyl)-2-(pyridin-4-yl)pyrrols can be used as anticoccidial agents (Qian et al. 2006) or as p38 MAP kinase inhibitors (de Laszlo et al. 1998; Revesz et al. 2000, 2002).

The analysis of the crystal structure of the title compound is shown in Fig. 1. The pyrrole ring makes dihedral angles of 33.19 (9)° and 36.33 (10)° to the pyridine ring and the 4-fluorophenyl ring, respectively. The pyridine ring makes a dihedral angle of 46.59 (9)° to the 4-fluorophenyl ring.

The crystal packing (Fig. 2) shows that N1—H1 of the pyrrole ring forms an intermolecular N—H···N hydrogen bond to the pyridine ring (N16) resulting in a chain parallel to the a axis.

Experimental

Ammonium acetate (2.20 g, 34.9 mmol) was added to a solution of 4-(4-fluorophenyl)-4-oxo-3-(pyridin-4-yl)butanal (0.50 g) in glacial acetic acid (10 ml). The resulting mixture was heated to 388–393 K for 2 h. The solvent was removed under reduced pressure and the residue was diluted with ethyl acetate and aq. NaHCO3 solution. Solid Na2CO3 was added until effervescence ceased. The organic phase was washed with aq. NaHCO3 solution and brine, dried over Na2SO4 and the solvent was evaporated under reduced pressure to give crude I. The residue was dissolved in ethyl acetate (7 ml) and filtered, then purified by flash chromatography (SiO2, petroleum ether/ethyl acetate 1:1 to 1:4). Yield 135 mg. For X-ray suitable crystals of compound I were obtained by slow evaporation at 298 K of a solution of n-hexane–ethyl acetate.

Refinement

All atoms were located in a differerence Fourier map. Nevertheless, they were placed at calculated positions with C—H = 0.95 Å or N—H = 0.94 Å and they were refined in the riding-model approximation with isotropic displacement parameters set to 1.2 times of the Ueq of the parent atom.

Figures

Fig. 1.
View of the title compound. Displacement ellipsoids are drawn at the 50% probability level. H atoms are depicted as circles of arbitrary size.
Fig. 2.
Crystal packing of the title compound. The hydrogen bond is shown with dashed lines. View along the b axis.

Crystal data

C15H11FN2F(000) = 992
Mr = 238.26Dx = 1.359 Mg m3
Orthorhombic, PbcaCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ac 2abCell parameters from 25 reflections
a = 9.2966 (7) Åθ = 30–51.7°
b = 8.1966 (5) ŵ = 0.76 mm1
c = 30.5738 (19) ÅT = 193 K
V = 2329.7 (3) Å3Plate, light brown
Z = 80.25 × 0.20 × 0.18 mm

Data collection

Enraf–Nonius CAD-4 diffractometerRint = 0.0000
Radiation source: rotating anodeθmax = 69.5°, θmin = 2.9°
graphiteh = 0→11
ω/2θ scansk = −9→0
2175 measured reflectionsl = −36→0
2175 independent reflections3 standard reflections every 60 min
1744 reflections with I > 2σ(I) intensity decay: 2%

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.120w = 1/[σ2(Fo2) + (0.0641P)2 + 0.5148P] where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
2175 reflectionsΔρmax = 0.26 e Å3
164 parametersΔρmin = −0.17 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00086 (16)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N10.51524 (14)0.21406 (17)0.41905 (5)0.0278 (3)
H10.60830.22660.40810.033*
C20.39066 (16)0.2347 (2)0.39570 (6)0.0249 (4)
C30.27690 (16)0.2008 (2)0.42407 (5)0.0255 (4)
C40.33869 (18)0.1586 (2)0.46491 (6)0.0311 (4)
H40.28760.12880.49060.037*
C50.48474 (18)0.1684 (2)0.46075 (6)0.0317 (4)
H50.55310.14700.48310.038*
C60.39610 (16)0.2800 (2)0.34938 (5)0.0264 (4)
C70.50091 (18)0.3890 (2)0.33407 (6)0.0331 (4)
H70.56980.43220.35390.040*
C80.5055 (2)0.4345 (3)0.29053 (6)0.0421 (5)
H80.57730.50750.28020.051*
C90.4047 (2)0.3721 (3)0.26266 (6)0.0429 (5)
C100.3009 (2)0.2630 (3)0.27593 (6)0.0395 (5)
H100.23290.22070.25570.047*
C110.29785 (18)0.2163 (2)0.31936 (6)0.0311 (4)
H110.22790.13970.32890.037*
F120.40632 (16)0.4201 (2)0.22006 (4)0.0706 (5)
C130.12145 (16)0.20955 (19)0.41599 (5)0.0244 (4)
C140.05747 (18)0.3235 (2)0.38834 (6)0.0292 (4)
H140.11550.39910.37270.035*
C15−0.09026 (18)0.3267 (2)0.38362 (6)0.0318 (4)
H15−0.13070.40530.36440.038*
N16−0.17994 (14)0.2253 (2)0.40458 (5)0.0329 (4)
C17−0.11823 (18)0.1169 (2)0.43157 (6)0.0320 (4)
H17−0.17910.04420.44720.038*
C180.02834 (17)0.1046 (2)0.43807 (5)0.0286 (4)
H180.06570.02480.45750.034*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0166 (6)0.0319 (8)0.0348 (8)−0.0002 (6)−0.0004 (5)0.0008 (6)
C20.0176 (7)0.0249 (8)0.0322 (9)0.0008 (6)0.0008 (6)−0.0021 (6)
C30.0207 (8)0.0253 (8)0.0304 (8)−0.0006 (6)0.0015 (6)−0.0009 (7)
C40.0258 (8)0.0379 (10)0.0297 (9)0.0005 (7)0.0018 (7)0.0050 (7)
C50.0266 (8)0.0359 (10)0.0327 (9)0.0011 (7)−0.0036 (7)0.0037 (7)
C60.0199 (7)0.0276 (8)0.0316 (9)0.0044 (6)0.0034 (6)−0.0020 (6)
C70.0267 (8)0.0374 (10)0.0353 (9)−0.0029 (7)0.0064 (7)−0.0013 (7)
C80.0413 (10)0.0452 (11)0.0399 (10)−0.0017 (9)0.0160 (9)0.0048 (8)
C90.0483 (11)0.0538 (12)0.0266 (9)0.0098 (10)0.0091 (8)0.0025 (8)
C100.0377 (10)0.0475 (11)0.0332 (10)0.0072 (9)−0.0022 (8)−0.0071 (8)
C110.0253 (8)0.0342 (9)0.0339 (9)0.0030 (7)0.0007 (7)−0.0027 (7)
F120.0869 (11)0.0956 (11)0.0292 (6)−0.0015 (9)0.0080 (6)0.0113 (7)
C130.0204 (8)0.0262 (8)0.0264 (8)−0.0003 (6)0.0028 (6)−0.0052 (6)
C140.0226 (8)0.0289 (9)0.0361 (9)0.0001 (7)0.0041 (7)0.0013 (7)
C150.0232 (8)0.0343 (9)0.0380 (10)0.0042 (7)0.0013 (7)0.0012 (8)
N160.0197 (7)0.0426 (9)0.0362 (8)0.0000 (6)0.0031 (6)−0.0027 (7)
C170.0237 (8)0.0384 (10)0.0339 (9)−0.0049 (7)0.0065 (7)0.0000 (7)
C180.0244 (8)0.0326 (9)0.0286 (8)−0.0009 (7)0.0025 (6)0.0005 (7)

Geometric parameters (Å, °)

N1—C51.358 (2)C9—F121.360 (2)
N1—C21.371 (2)C9—C101.377 (3)
N1—H10.9339C10—C111.382 (3)
C2—C31.396 (2)C10—H100.9500
C2—C61.465 (2)C11—H110.9500
C3—C41.417 (2)C13—C141.393 (2)
C3—C131.468 (2)C13—C181.395 (2)
C4—C51.366 (2)C14—C151.381 (2)
C4—H40.9500C14—H140.9500
C5—H50.9500C15—N161.340 (2)
C6—C111.396 (2)C15—H150.9500
C6—C71.402 (2)N16—C171.341 (2)
C7—C81.383 (3)C17—C181.381 (2)
C7—H70.9500C17—H170.9500
C8—C91.366 (3)C18—H180.9500
C8—H80.9500
C5—N1—C2110.27 (14)F12—C9—C10118.54 (19)
C5—N1—H1124.1C8—C9—C10122.70 (18)
C2—N1—H1125.6C9—C10—C11118.50 (18)
N1—C2—C3106.96 (15)C9—C10—H10120.8
N1—C2—C6120.37 (14)C11—C10—H10120.8
C3—C2—C6132.65 (15)C10—C11—C6120.97 (17)
C2—C3—C4106.80 (14)C10—C11—H11119.5
C2—C3—C13129.17 (15)C6—C11—H11119.5
C4—C3—C13124.00 (15)C14—C13—C18116.25 (15)
C5—C4—C3107.84 (15)C14—C13—C3123.73 (15)
C5—C4—H4126.1C18—C13—C3119.96 (15)
C3—C4—H4126.1C15—C14—C13120.04 (16)
N1—C5—C4108.13 (15)C15—C14—H14120.0
N1—C5—H5125.9C13—C14—H14120.0
C4—C5—H5125.9N16—C15—C14123.85 (17)
C11—C6—C7118.26 (16)N16—C15—H15118.1
C11—C6—C2121.19 (15)C14—C15—H15118.1
C7—C6—C2120.55 (15)C15—N16—C17116.02 (14)
C8—C7—C6120.96 (18)N16—C17—C18123.98 (16)
C8—C7—H7119.5N16—C17—H17118.0
C6—C7—H7119.5C18—C17—H17118.0
C9—C8—C7118.57 (18)C17—C18—C13119.86 (16)
C9—C8—H8120.7C17—C18—H18120.1
C7—C8—H8120.7C13—C18—H18120.1
F12—C9—C8118.76 (19)
C5—N1—C2—C30.13 (19)C7—C8—C9—C10−1.6 (3)
C5—N1—C2—C6−178.44 (15)F12—C9—C10—C11−178.99 (17)
N1—C2—C3—C4−0.29 (18)C8—C9—C10—C110.8 (3)
C6—C2—C3—C4178.03 (17)C9—C10—C11—C61.0 (3)
N1—C2—C3—C13177.86 (16)C7—C6—C11—C10−1.9 (2)
C6—C2—C3—C13−3.8 (3)C2—C6—C11—C10178.16 (16)
C2—C3—C4—C50.4 (2)C2—C3—C13—C14−33.5 (3)
C13—C3—C4—C5−177.92 (16)C4—C3—C13—C14144.40 (18)
C2—N1—C5—C40.1 (2)C2—C3—C13—C18149.46 (17)
C3—C4—C5—N1−0.3 (2)C4—C3—C13—C18−32.7 (2)
N1—C2—C6—C11142.67 (16)C18—C13—C14—C15−0.8 (2)
C3—C2—C6—C11−35.5 (3)C3—C13—C14—C15−177.95 (16)
N1—C2—C6—C7−37.2 (2)C13—C14—C15—N160.4 (3)
C3—C2—C6—C7144.63 (19)C14—C15—N16—C170.3 (3)
C11—C6—C7—C81.1 (3)C15—N16—C17—C18−0.7 (3)
C2—C6—C7—C8−178.99 (17)N16—C17—C18—C130.3 (3)
C6—C7—C8—C90.6 (3)C14—C13—C18—C170.4 (2)
C7—C8—C9—F12178.17 (18)C3—C13—C18—C17177.73 (16)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···N16i0.931.972.8696 (19)161

Symmetry codes: (i) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2858).

References

  • Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  • Dräger, M. & Gattow, G. (1971). Acta Chem. Scand.25, 761–762.
  • Enraf–Nonius (1989). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  • Laszlo, S. E. de, Visco, D., Agarwal, L., Chang, L., Chin, J., Croft, G., Forsyth, A., Fletcher, D., Frantz, B., Hacker, C., Hanlon, W., Harper, C., Kostura, M., Li, B., Luell, S., MacCoss, M., Mantlo, N., O’Neill, E. A., Orevillo, C., Pang, M., Parsons, J., Rolando, A., Sahly, Y., Sidler, K., Widmer, W. R. & O’Keefe, S. J. (1998). Bioorg. Med. Chem. Lett.8, 2689–2694. [PubMed]
  • Qian, X., Liang, G.-B., Feng, D., Fisher, M., Crumley, T., Rattray, S., Dulski, P. M., Gurnett, A., Leavitt, P. S., Liberator, P. A., Misura, A. S., Samaras, S., Tamas, T., Schmatz, D. M., Wyvratt, M. & Biftu, T. (2006). Bioorg. Med. Chem. Lett.16, 2817–2821. [PubMed]
  • Revesz, L., Di Padova, F. E., Buhl, T., Feifel, R., Gram, H., Hiestand, P., Manning, U., Wolf, R. & Zimmerlin, A. G. (2002). Bioorg. Med. Chem. Lett.12, 2109–2112. [PubMed]
  • Revesz, L., Di Padova, F. E., Buhl, T., Feifel, R., Gram, H., Hiestand, P., Manning, U. & Zimmerlin, A. G. (2000). Bioorg. Med. Chem. Lett.10, 1261–1264. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography