PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 March 1; 65(Pt 3): o640.
Published online 2009 February 28. doi:  10.1107/S1600536809006825
PMCID: PMC2968661

4-Amino-3-bromo­benzoic acid

Abstract

The asymmetric unit of the title compound, C7H6BrNO2, consists of two mol­ecules having a small variation of bond lengths and angles. The title compound forms dimers through pairs of O—H(...)O hydrogen bonds involving the carboxyl­ate groups. The dimers are linked into polymeric forms through inter­molecular hydrogen bonds, forming R 2 1(6), R 3 2(8) and R 3 3(15) ring motifs.

Related literature

The title compound has been prepared as an inter­mediate for the synthesis of sulfonamides (Arshad et al., 2009 [triangle]) and benzothia­zines (Arshad et al., 2008 [triangle]). For hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]). For related structures, see: Pant (1965 [triangle]); Tanaka et al. (1967 [triangle]). For the synthesis, see: Krishna Mohan et al. (2004 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o640-scheme1.jpg

Experimental

Crystal data

  • C7H6BrNO2
  • M r = 216.04
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o640-efi1.jpg
  • a = 24.3968 (11) Å
  • b = 4.8388 (2) Å
  • c = 12.8040 (5) Å
  • V = 1511.53 (11) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 5.38 mm−1
  • T = 296 K
  • 0.22 × 0.16 × 0.14 mm

Data collection

  • Bruker Kappa APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.375, T max = 0.469
  • 9922 measured reflections
  • 3908 independent reflections
  • 3169 reflections with I > 2σ(I)
  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.030
  • wR(F 2) = 0.059
  • S = 1.00
  • 3908 reflections
  • 214 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.44 e Å−3
  • Δρmin = −0.49 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1857 Friedel pairs
  • Flack parameter: 0.012 (9)

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]) and PLATON.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809006825/bq2123sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809006825/bq2123Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

MNA greatfully acknowledges the Higher Education Commission, Islamabad, Pakistan, for providing him with a Scholaship under the Indigenous PhD Program (PIN 042–120607-PS2–183).

supplementary crystallographic information

Comment

Different types of aromatic anilines have been used for the synthesis of carboxamides and sulfonamides. The title compound (I), (Fig 1), has been prepared as an intermediate for the synthesis of sulfonamides (Arshad et al., 2009), benzothiazines (Arshad et al., 2008) and different metal complexes.

The crystal structure of m-Bromobenzoic acid (Tanaka et al., 1967) and 3,5-Dibromo-p-aminobenzoic acid (Pant, 1965) has been published. The title compound consists of an asymmetric unit having two chemical isomers. There is a small variation of bond lengths and bond angles among the two isomers and both isomers form five membered ring (Br/C/C/N/H) through intramolecular H-bond of type N—H···Br. The molecules are dimerized forming R22(8) ring motifs (Bernstein et al., 1995). These dimers are linked to each other through R21(6), R32(8) and R33(15) ring motifs (Table 1), (Fig 2).

Experimental

The title copound was prepared following the same method (Krishna Mohan et al., 2004) available in literature. 4-Amino Benzoic acid (2 g, 0.0146 mol) and ammonium bromide (1.5 g, 0.16 mol) was charged to a flask (25 ml) containing acetic acid (15 ml). Hydrogen peroxide (0.545 g, 0.016 mol) was added drop wise to the above mixture and allowed to stirr at room temperature for 3 h. Stirring was stoped and allowed it to setteled down. Precipitate obtained was filtered and washed with water and recrystalizesd in dichloromethane and methanol for X-ray studies.

Refinement

The coordinates of H-atoms of amino groups were refined. H-atoms were positioned geometrically, with O-H = 0.82 Å for OH, C-H = 0.93 Å for aromatic H, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C, N, O), where x = 1.2 for all other H atoms.

Figures

Fig. 1.
ORTEP drawing of the title compound, with the atom numbering scheme. The thermal ellipsoids are drawn at the 30% probability level. The dotted lines show the intramolecular H-bonds.
Fig. 2.
The projectional view (PLATON: Spek, 2009) which shows that molecules are dimerized and form ring motifs.

Crystal data

C7H6BrNO2F(000) = 848
Mr = 216.04Dx = 1.899 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 3169 reflections
a = 24.3968 (11) Åθ = 1.7–28.7°
b = 4.8388 (2) ŵ = 5.38 mm1
c = 12.8040 (5) ÅT = 296 K
V = 1511.53 (11) Å3Prismatic, colorless
Z = 80.22 × 0.16 × 0.14 mm

Data collection

Bruker Kappa APEXII CCD diffractometer3908 independent reflections
Radiation source: fine-focus sealed tube3169 reflections with I > 2σ(I)
graphiteRint = 0.027
Detector resolution: 7.40 pixels mm-1θmax = 28.7°, θmin = 1.7°
ω scansh = −32→33
Absorption correction: multi-scan (SADABS; Bruker, 2005)k = −6→5
Tmin = 0.375, Tmax = 0.469l = −17→17
9922 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.059w = 1/[σ2(Fo2) + (0.0107P)2] where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
3908 reflectionsΔρmax = 0.44 e Å3
214 parametersΔρmin = −0.49 e Å3
1 restraintAbsolute structure: Flack (1983), 1857 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.012 (9)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br10.320114 (15)−0.05594 (7)0.25848 (2)0.03957 (10)
O10.14368 (11)0.8516 (5)0.40595 (16)0.0440 (6)
H10.12880.98460.37810.053*
O20.16062 (9)0.7357 (4)0.24087 (17)0.0350 (5)
N10.33671 (15)0.0202 (8)0.4953 (3)0.0510 (10)
H1A0.3479 (16)−0.127 (8)0.455 (3)0.061*
H1B0.3387 (19)0.004 (8)0.560 (4)0.061*
C10.21062 (12)0.5149 (6)0.3765 (3)0.0302 (6)
C20.23965 (12)0.3438 (6)0.3108 (2)0.0288 (7)
H20.23180.34160.23970.035*
C30.28043 (13)0.1752 (6)0.3501 (2)0.0275 (7)
C40.29402 (14)0.1757 (7)0.4569 (3)0.0339 (8)
C50.26337 (14)0.3430 (8)0.5214 (3)0.0428 (9)
H50.27020.34090.59280.051*
C60.22328 (15)0.5119 (7)0.4833 (3)0.0416 (9)
H60.20410.62650.52870.050*
C70.16965 (14)0.7060 (7)0.3350 (3)0.0312 (8)
Br20.068709 (14)−0.02802 (6)0.87184 (3)0.03738 (9)
O3−0.09440 (11)0.8621 (5)0.66215 (19)0.0441 (6)
H3−0.11360.98590.68620.053*
O4−0.08170 (10)0.7685 (5)0.83152 (18)0.0400 (6)
N20.09823 (15)−0.0184 (7)0.6365 (3)0.0468 (9)
H2A0.1139 (15)−0.152 (7)0.687 (3)0.056*
H2B0.1093 (17)−0.052 (8)0.580 (4)0.056*
C8−0.02918 (14)0.5234 (6)0.7088 (3)0.0284 (7)
C9−0.00474 (13)0.3632 (6)0.7867 (2)0.0281 (7)
H9−0.01670.37860.85540.034*
C100.03682 (12)0.1830 (6)0.7625 (3)0.0286 (6)
C110.05602 (13)0.1496 (7)0.6603 (3)0.0305 (7)
C120.03023 (14)0.3106 (8)0.5824 (2)0.0400 (8)
H120.04160.29490.51340.048*
C13−0.01099 (15)0.4883 (6)0.6068 (3)0.0371 (8)
H13−0.02750.58940.55370.045*
C14−0.07084 (13)0.7263 (6)0.7391 (3)0.0315 (7)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.03529 (19)0.04090 (18)0.0425 (2)0.00405 (15)0.00077 (17)−0.0027 (2)
O10.0561 (17)0.0506 (15)0.0252 (12)0.0258 (13)0.0033 (11)0.0052 (11)
O20.0373 (13)0.0412 (13)0.0265 (13)0.0111 (9)0.0002 (10)0.0058 (10)
N10.049 (2)0.069 (2)0.0351 (19)0.0173 (16)−0.0101 (17)0.0089 (16)
C10.0271 (15)0.0389 (15)0.0246 (15)0.0026 (13)−0.0001 (16)0.0062 (15)
C20.0250 (18)0.0351 (18)0.0264 (17)−0.0012 (14)−0.0023 (13)0.0040 (14)
C30.0254 (17)0.0300 (16)0.027 (2)0.0002 (13)0.0000 (13)0.0040 (13)
C40.0293 (19)0.0360 (19)0.036 (2)0.0029 (15)−0.0073 (14)0.0071 (16)
C50.044 (2)0.060 (2)0.0246 (17)0.0105 (19)−0.0050 (16)−0.0015 (17)
C60.039 (2)0.051 (2)0.034 (2)0.0133 (16)0.0008 (16)0.0011 (16)
C70.032 (2)0.0305 (17)0.0310 (19)−0.0003 (14)0.0025 (15)0.0055 (15)
Br20.03815 (19)0.03913 (17)0.03487 (17)0.00381 (15)−0.00324 (17)0.0049 (2)
O30.0484 (16)0.0458 (15)0.0381 (14)0.0211 (12)−0.0097 (12)−0.0080 (12)
O40.0403 (16)0.0471 (15)0.0326 (13)0.0124 (12)−0.0019 (11)−0.0078 (11)
N20.053 (2)0.054 (2)0.0327 (18)0.0179 (16)0.0056 (16)−0.0052 (16)
C80.0292 (17)0.0257 (15)0.0303 (17)0.0030 (13)−0.0028 (14)−0.0054 (13)
C90.0309 (18)0.0323 (16)0.0212 (16)−0.0029 (14)0.0027 (12)−0.0047 (12)
C100.0310 (16)0.0269 (14)0.0278 (16)−0.0003 (12)−0.0057 (15)0.0013 (16)
C110.0285 (17)0.0335 (17)0.0296 (17)0.0008 (14)−0.0003 (14)−0.0041 (15)
C120.044 (2)0.055 (2)0.0206 (17)0.0048 (17)0.0046 (15)−0.0024 (15)
C130.046 (2)0.0403 (17)0.0254 (19)0.0058 (16)−0.0058 (15)0.0011 (14)
C140.0302 (17)0.0287 (16)0.035 (2)0.0012 (12)−0.0015 (16)−0.0019 (14)

Geometric parameters (Å, °)

Br1—C31.888 (3)Br2—C101.899 (3)
O1—C71.312 (4)O3—C141.316 (4)
O1—H10.8200O3—H30.8200
O2—C71.234 (3)O4—C141.230 (3)
N1—C41.376 (4)N2—C111.347 (5)
N1—H1A0.92 (4)N2—H2A0.99 (4)
N1—H1B0.83 (4)N2—H2B0.79 (4)
C1—C21.376 (5)C8—C131.390 (5)
C1—C61.402 (5)C8—C91.397 (4)
C1—C71.462 (5)C8—C141.465 (4)
C2—C31.382 (4)C9—C101.373 (4)
C2—H20.9300C9—H90.9300
C3—C41.407 (4)C10—C111.400 (5)
C4—C51.377 (5)C11—C121.413 (5)
C5—C61.365 (5)C12—C131.360 (5)
C5—H50.9300C12—H120.9300
C6—H60.9300C13—H130.9300
C7—O1—H1109.5C14—O3—H3109.5
C4—N1—H1A116 (2)C11—N2—H2A123 (2)
C4—N1—H1B117 (3)C11—N2—H2B126 (3)
H1A—N1—H1B118 (4)H2A—N2—H2B109 (4)
C2—C1—C6118.5 (3)C13—C8—C9117.8 (3)
C2—C1—C7120.7 (3)C13—C8—C14123.5 (3)
C6—C1—C7120.7 (3)C9—C8—C14118.7 (3)
C1—C2—C3120.2 (3)C10—C9—C8120.5 (3)
C1—C2—H2119.9C10—C9—H9119.7
C3—C2—H2119.9C8—C9—H9119.7
C2—C3—C4121.5 (3)C9—C10—C11122.1 (3)
C2—C3—Br1119.5 (2)C9—C10—Br2118.6 (2)
C4—C3—Br1119.0 (2)C11—C10—Br2119.4 (2)
N1—C4—C5121.3 (3)N2—C11—C10122.5 (3)
N1—C4—C3121.6 (3)N2—C11—C12120.9 (3)
C5—C4—C3117.1 (3)C10—C11—C12116.6 (3)
C6—C5—C4121.8 (3)C13—C12—C11121.0 (3)
C6—C5—H5119.1C13—C12—H12119.5
C4—C5—H5119.1C11—C12—H12119.5
C5—C6—C1120.8 (3)C12—C13—C8122.0 (3)
C5—C6—H6119.6C12—C13—H13119.0
C1—C6—H6119.6C8—C13—H13119.0
O2—C7—O1121.8 (3)O4—C14—O3122.9 (3)
O2—C7—C1123.4 (3)O4—C14—C8121.0 (3)
O1—C7—C1114.7 (3)O3—C14—C8116.1 (3)
C6—C1—C2—C3−0.4 (4)C13—C8—C9—C101.7 (5)
C7—C1—C2—C3176.3 (3)C14—C8—C9—C10−176.0 (3)
C1—C2—C3—C4−0.9 (5)C8—C9—C10—C11−0.7 (5)
C1—C2—C3—Br1−179.5 (2)C8—C9—C10—Br2179.7 (2)
C2—C3—C4—N1−176.1 (3)C9—C10—C11—N2177.3 (3)
Br1—C3—C4—N12.5 (5)Br2—C10—C11—N2−3.1 (4)
C2—C3—C4—C52.7 (5)C9—C10—C11—C12−0.2 (5)
Br1—C3—C4—C5−178.7 (3)Br2—C10—C11—C12179.4 (2)
N1—C4—C5—C6175.6 (4)N2—C11—C12—C13−177.4 (3)
C3—C4—C5—C6−3.2 (6)C10—C11—C12—C130.1 (5)
C4—C5—C6—C12.0 (6)C11—C12—C13—C81.0 (6)
C2—C1—C6—C5−0.1 (5)C9—C8—C13—C12−1.8 (5)
C7—C1—C6—C5−176.8 (3)C14—C8—C13—C12175.7 (3)
C2—C1—C7—O2−3.7 (5)C13—C8—C14—O4−172.8 (3)
C6—C1—C7—O2172.9 (3)C9—C8—C14—O44.7 (5)
C2—C1—C7—O1178.0 (3)C13—C8—C14—O35.7 (5)
C6—C1—C7—O1−5.3 (5)C9—C8—C14—O3−176.8 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1···O4i0.821.762.564 (3)165
N1—H1A···Br10.92 (4)2.63 (4)3.081 (4)111 (3)
N1—H1B···O2ii0.83 (5)2.57 (5)3.313 (4)149 (4)
N2—H2A···Br20.99 (4)2.68 (4)3.099 (4)106 (2)
N2—H2A···Br1ii0.99 (4)2.69 (4)3.630 (4)158 (3)
N2—H2B···O1iii0.79 (5)2.43 (5)3.216 (4)179 (6)
O3—H3···O2iv0.821.902.723 (3)178
C5—H5···O2ii0.932.593.407 (4)147
C12—H12···O4v0.932.543.470 (4)174

Symmetry codes: (i) −x, −y+2, z−1/2; (ii) −x+1/2, y−1/2, z+1/2; (iii) x, y−1, z; (iv) −x, −y+2, z+1/2; (v) −x, −y+1, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2123).

References

  • Arshad, M. N., Tahir, M. N., Khan, I. U., Shafiq, M. & Siddiqui, W. A. (2008). Acta Cryst. E64, o2045. [PMC free article] [PubMed]
  • Arshad, M. N., Tahir, M. N., Khan, I. U., Siddiqui, W. A. & Shafiq, M. (2009). Acta Cryst. E65, o230. [PMC free article] [PubMed]
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
  • Bruker (2005). SADABS Bruker AXS Inc. Madison, Wisconsin, USA.
  • Bruker (2007). APEX2 and SAINT Bruker AXS Inc. Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Krishna Mohan, K. V. V., Narender, N., Srinivasu, P., Kulkarni, S. J. & Raghavan, K. V. (2004). Synth. Commun.34, 2143–2152.
  • Pant, A. K. (1965). Acta Cryst.19, 440–448.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Tanaka, N., Ashida, T., Sasada, Y. & Kakudo, M. (1967). Bull. Chem. Soc. Jpn, 40, 2717. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography