PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 March 1; 65(Pt 3): o451.
Published online 2009 February 4. doi:  10.1107/S1600536809003614
PMCID: PMC2968660

9,9-Dimethyl-9-silafluorene

Abstract

The title compound, C14H14Si, crystallizes with two almost identical mol­ecules (r.m.s. deviation = 0.080 Å for all non-H atoms) in the asymmetric unit. All atoms of the silafluorene moiety lie in a common plane (r.m.s. deviations = 0.049 and 0.035 Å for the two mol­ecules in the asymmetric unit). The Si—Cmeth­yl bonds are significantly shorter [1.865 (4)–1.868 (4) Å] than the Si—Caromatic bonds [1.882 (3)–1.892 (3) Å]. Owing to strain in the five-membered ring, the endocyclic C—Si—C angles are reduced to 91.05 (14) and 91.21 (14)°.

Related literature

For the synthesis, see: Hudrlik et al. (2006 [triangle]). For related compounds, see: Kaufmann et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o451-scheme1.jpg

Experimental

Crystal data

  • C14H14Si
  • M r = 210.34
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o451-efi1.jpg
  • a = 16.1336 (8) Å
  • b = 8.7752 (5) Å
  • c = 17.0227 (11) Å
  • β = 92.208 (5)°
  • V = 2408.2 (2) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.16 mm−1
  • T = 173 (2) K
  • 0.22 × 0.17 × 0.09 mm

Data collection

  • Stoe IPDS-II two-circle diffractometer
  • Absorption correction: multi-scan (MULABS; Spek, 2003 [triangle]; Blessing, 1995 [triangle]) T min = 0.966, T max = 0.976
  • 38382 measured reflections
  • 4404 independent reflections
  • 3274 reflections with I > 2σ(I)
  • R int = 0.082

Refinement

  • R[F 2 > 2σ(F 2)] = 0.061
  • wR(F 2) = 0.157
  • S = 1.12
  • 4404 reflections
  • 271 parameters
  • H-atom parameters constrained
  • Δρmax = 0.38 e Å−3
  • Δρmin = −0.29 e Å−3

Data collection: X-AREA (Stoe & Cie, 2001 [triangle]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003 [triangle]).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809003614/at2718sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809003614/at2718Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Our group has a long-standing interest in redox-switchable Lewis acids derived from ferrocenylboranes. Very recently we have synthesized 9-ferrocenyl-9-borafluorene derivatives (Kaufmann et al., 2008). Herein we describe the preparation and structure of 9,9-dimethyl-9-silafluorene (Me2SiC12H8) which was used as a starting material in the synthesis of these 9-ferrocenyl-9-borafluorene derivatives. The title compound was obtained by treatment of 2,2'-dilithio biphenylene with dichlorodimethylsilane Me2SiCl2 following a literature procedure (Hudrlik et al., 2006) as indicated in the equation below.

The title compound crystallizes with two almost identical molecules (r.m.s. deviation 0.080Å for all non-H atoms except the methyl groups) in the asymmetric unit (Fig. 1 and 2). All atoms of the silafluorene moiety lie in a common plane (r.m.s. deviation 0.049 Å and 0.035 Å for the two molecules in the asymmetric unit. The Si—Cmethyl bonds are considerably shorter [1.865 (4) Å to 1.868 (4) Å] than the Si—Caromatic bonds [1.882 (3) Å to 1.892 (3) Å]. Due to the strain in the five-membered ring, the innercyclic C—Si—C angle is reduced to 91.05 (14)° and 91.21 (14)°, respectively.

Experimental

A solution of Me2SiCl2 (1.9 ml, 2.03 g, 15.8 mmol) and NEt3 (1.9 ml, 1.38 g, 13.6 mmol) in 50 ml THF was added dropwise to a solution of 2,2'-dilithio biphenylene (14.6 mmol) which was generated from one equivalent of 2,2'-dibrom biphenylene (4.46 g, 14.6 mmol) and two equivalents of nBuLi (28.8 mmol) in 50 ml diethyl ether at 195 K. After stirring for 2 h the solution was filtered. After removing the solvent, the residue was treated with 50 ml water and 30 ml diethyl ether. After removing the diethyl ether from the organic layer, X-ray quality crystals were obtained by sublimation (80%). The NMR spectra were recorded on a Bruker DPX 250 and a Bruker avance 400 spectrometer. 9,9-dimethyl-9-silafluorene: 1H NMR (CDCl3, internal TMS): δ 0.43 (s; 6 H, MeSi), δ 7,28 (m; 2 H), δ 7.44 (m; 2 H), δ 7.64 (m; 2 H), δ 7.83 (m; 2 H). 13C{1H}NMR (CDCl3, internal TMS): δ -3.2 (MeSi), δ 120.8, δ 127.4, δ 130.2, δ 132.7, δ 139.0, δ 140.9.

Refinement

H atoms were geometrically positioned and refined using a riding model with fixed individual displacement parameters [Uiso(H) = 1.2 Ueq(C) or Uiso(H) = 1.5 Ueq(Cmethyl)] using a riding model with C—H(aromatic) = 0.95 Å or C—H(methyl) = 0.98 Å, respectively.

Figures

Fig. 1.
Perspective view of the first molecule in the asymmetric unit of the title compound with the atom numbering scheme; displacement ellipsoids are at the 50% probability level; H atoms are drawn as small spheres of arbitrary radii.
Fig. 2.
Perspective view of the second molecule in the asymmetric unit of the title compound with the atom numbering scheme; displacement ellipsoids are at the 50% probability level; H atoms are drawn as small spheres of arbitrary radii.
Fig. 3.
The formation of the title compound.

Crystal data

C14H14SiF(000) = 896
Mr = 210.34Dx = 1.160 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 18030 reflections
a = 16.1336 (8) Åθ = 2.4–27.5°
b = 8.7752 (5) ŵ = 0.16 mm1
c = 17.0227 (11) ÅT = 173 K
β = 92.208 (5)°Plate, colourless
V = 2408.2 (2) Å30.22 × 0.17 × 0.09 mm
Z = 8

Data collection

Stoe IPDS-II two-circle diffractometer4404 independent reflections
Radiation source: fine-focus sealed tube3274 reflections with I > 2σ(I)
graphiteRint = 0.082
ω scansθmax = 25.4°, θmin = 2.4°
Absorption correction: multi-scan (MULABS; Spek, 2003; Blessing, 1995)h = −19→19
Tmin = 0.966, Tmax = 0.976k = −10→10
38382 measured reflectionsl = −20→20

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.157H-atom parameters constrained
S = 1.12w = 1/[σ2(Fo2) + (0.0668P)2 + 1.3736P] where P = (Fo2 + 2Fc2)/3
4404 reflections(Δ/σ)max < 0.001
271 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = −0.29 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Si1A0.04143 (6)0.84574 (10)0.17553 (5)0.0343 (2)
C1A0.09531 (19)0.8679 (4)0.27489 (19)0.0346 (7)
C2A0.15535 (19)0.9860 (4)0.27160 (19)0.0336 (7)
C3A0.2043 (2)1.0224 (4)0.3386 (2)0.0428 (8)
H3A0.24491.10070.33650.051*
C4A0.1936 (3)0.9439 (5)0.4081 (2)0.0515 (10)
H4A0.22740.96810.45340.062*
C5A0.1342 (3)0.8308 (5)0.4124 (2)0.0515 (10)
H5A0.12720.77820.46050.062*
C6A0.0847 (2)0.7941 (4)0.3465 (2)0.0439 (8)
H6A0.04330.71780.35010.053*
C7A0.0576 (2)0.6583 (4)0.1269 (2)0.0466 (9)
H7A10.11720.63680.12560.070*
H7A20.03390.66160.07300.070*
H7A30.03030.57800.15630.070*
C8A−0.0723 (2)0.8848 (4)0.1776 (2)0.0458 (9)
H8A1−0.08130.98320.20320.069*
H8A2−0.09930.80400.20700.069*
H8A3−0.09580.88780.12370.069*
C11A0.10420 (19)1.0065 (4)0.13428 (19)0.0326 (7)
C12A0.15905 (18)1.0648 (4)0.19395 (19)0.0321 (7)
C13A0.2105 (2)1.1889 (4)0.1784 (2)0.0408 (8)
H13A0.24751.22730.21840.049*
C14A0.2074 (2)1.2558 (4)0.1047 (2)0.0467 (9)
H14A0.24151.34120.09470.056*
C15A0.1546 (2)1.1985 (4)0.0452 (2)0.0441 (9)
H15A0.15321.2442−0.00540.053*
C16A0.1037 (2)1.0741 (4)0.0600 (2)0.0387 (8)
H16A0.06831.03480.01900.046*
Si10.46279 (5)0.38341 (10)0.17151 (5)0.0319 (2)
C10.40267 (19)0.4048 (4)0.26355 (19)0.0328 (7)
C20.34203 (18)0.5214 (4)0.25218 (19)0.0319 (7)
C30.2873 (2)0.5548 (4)0.3116 (2)0.0396 (8)
H30.24640.63180.30370.048*
C40.2928 (2)0.4752 (5)0.3820 (2)0.0458 (9)
H40.25510.49710.42190.055*
C50.3532 (3)0.3635 (4)0.3947 (2)0.0488 (9)
H50.35690.31040.44330.059*
C60.4083 (2)0.3298 (4)0.3358 (2)0.0418 (8)
H60.45010.25490.34510.050*
C70.5764 (2)0.4193 (4)0.1862 (2)0.0420 (8)
H7A0.58520.51710.21300.063*
H7B0.60220.42220.13510.063*
H7C0.60150.33750.21830.063*
C80.4471 (2)0.1964 (4)0.1206 (2)0.0432 (8)
H8A0.38760.17670.11260.065*
H8B0.47240.11510.15290.065*
H8C0.47320.19940.06950.065*
C110.40308 (18)0.5457 (4)0.12296 (18)0.0312 (7)
C120.34395 (18)0.6015 (4)0.17523 (18)0.0297 (7)
C130.2947 (2)0.7273 (4)0.1539 (2)0.0383 (8)
H130.25520.76480.18900.046*
C140.3034 (2)0.7970 (4)0.0819 (2)0.0431 (8)
H140.26980.88240.06790.052*
C150.3610 (2)0.7436 (4)0.0297 (2)0.0463 (9)
H150.36700.7922−0.01960.056*
C160.4098 (2)0.6178 (4)0.0506 (2)0.0414 (8)
H160.44850.58030.01470.050*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Si1A0.0323 (5)0.0327 (5)0.0383 (5)−0.0072 (4)0.0058 (3)−0.0003 (4)
C1A0.0344 (16)0.0312 (17)0.0390 (18)0.0049 (14)0.0098 (13)−0.0021 (14)
C2A0.0286 (16)0.0329 (17)0.0395 (18)0.0051 (13)0.0035 (13)−0.0057 (14)
C3A0.0374 (18)0.044 (2)0.046 (2)0.0087 (15)−0.0037 (15)−0.0084 (16)
C4A0.064 (2)0.055 (2)0.035 (2)0.018 (2)−0.0069 (17)−0.0116 (17)
C5A0.068 (3)0.053 (2)0.0334 (19)0.018 (2)0.0061 (17)0.0028 (16)
C6A0.052 (2)0.041 (2)0.0398 (19)0.0095 (16)0.0133 (16)0.0001 (15)
C7A0.055 (2)0.041 (2)0.045 (2)−0.0138 (17)0.0127 (16)−0.0058 (16)
C8A0.0376 (18)0.047 (2)0.053 (2)−0.0107 (16)0.0045 (15)0.0038 (17)
C11A0.0283 (16)0.0328 (17)0.0370 (17)−0.0029 (13)0.0057 (13)−0.0016 (13)
C12A0.0223 (14)0.0317 (17)0.0424 (18)0.0010 (12)0.0036 (12)−0.0069 (14)
C13A0.0348 (18)0.039 (2)0.049 (2)−0.0062 (14)0.0047 (15)−0.0071 (16)
C14A0.0388 (19)0.039 (2)0.063 (2)−0.0138 (16)0.0102 (16)0.0006 (18)
C15A0.045 (2)0.045 (2)0.042 (2)−0.0076 (16)0.0103 (15)0.0062 (16)
C16A0.0334 (17)0.044 (2)0.0388 (18)−0.0071 (15)0.0023 (14)−0.0011 (15)
Si10.0305 (4)0.0289 (5)0.0362 (5)0.0054 (4)−0.0002 (3)0.0007 (4)
C10.0345 (16)0.0283 (16)0.0352 (17)−0.0044 (13)−0.0035 (13)−0.0021 (13)
C20.0264 (15)0.0319 (17)0.0372 (17)−0.0055 (13)−0.0018 (12)−0.0062 (13)
C30.0367 (18)0.044 (2)0.0389 (19)−0.0070 (15)0.0050 (14)−0.0105 (15)
C40.047 (2)0.056 (2)0.0352 (19)−0.0149 (18)0.0078 (15)−0.0107 (17)
C50.065 (2)0.049 (2)0.0327 (18)−0.0198 (19)0.0001 (16)0.0003 (16)
C60.049 (2)0.039 (2)0.0379 (19)−0.0090 (16)−0.0025 (15)0.0006 (15)
C70.0319 (17)0.039 (2)0.055 (2)0.0053 (14)−0.0033 (15)0.0023 (16)
C80.047 (2)0.0363 (19)0.046 (2)0.0047 (16)0.0006 (16)−0.0024 (15)
C110.0278 (15)0.0296 (16)0.0362 (17)0.0029 (13)−0.0001 (12)−0.0014 (13)
C120.0266 (14)0.0306 (16)0.0317 (16)0.0007 (13)−0.0014 (12)−0.0068 (13)
C130.0303 (17)0.041 (2)0.0438 (19)0.0093 (14)−0.0010 (14)−0.0065 (15)
C140.0413 (19)0.041 (2)0.046 (2)0.0183 (16)−0.0054 (15)−0.0008 (16)
C150.050 (2)0.051 (2)0.0377 (19)0.0160 (17)−0.0006 (15)0.0059 (16)
C160.0404 (18)0.048 (2)0.0363 (18)0.0161 (16)0.0052 (14)0.0047 (15)

Geometric parameters (Å, °)

Si1A—C7A1.865 (4)Si1—C71.867 (3)
Si1A—C8A1.868 (4)Si1—C81.868 (4)
Si1A—C1A1.882 (3)Si1—C11.884 (3)
Si1A—C11A1.887 (3)Si1—C111.892 (3)
C1A—C6A1.396 (5)C1—C61.396 (5)
C1A—C2A1.421 (5)C1—C21.424 (4)
C2A—C3A1.399 (5)C2—C31.399 (5)
C2A—C12A1.495 (5)C2—C121.488 (4)
C3A—C4A1.386 (5)C3—C41.387 (5)
C3A—H3A0.9500C3—H30.9500
C4A—C5A1.384 (6)C4—C51.393 (6)
C4A—H4A0.9500C4—H40.9500
C5A—C6A1.389 (5)C5—C61.396 (5)
C5A—H5A0.9500C5—H50.9500
C6A—H6A0.9500C6—H60.9500
C7A—H7A10.9800C7—H7A0.9800
C7A—H7A20.9800C7—H7B0.9800
C7A—H7A30.9800C7—H7C0.9800
C8A—H8A10.9800C8—H8A0.9800
C8A—H8A20.9800C8—H8B0.9800
C8A—H8A30.9800C8—H8C0.9800
C11A—C16A1.396 (5)C11—C161.392 (5)
C11A—C12A1.417 (4)C11—C121.417 (4)
C12A—C13A1.401 (5)C12—C131.399 (4)
C13A—C14A1.383 (5)C13—C141.381 (5)
C13A—H13A0.9500C13—H130.9500
C14A—C15A1.392 (5)C14—C151.391 (5)
C14A—H14A0.9500C14—H140.9500
C15A—C16A1.395 (5)C15—C161.394 (5)
C15A—H15A0.9500C15—H150.9500
C16A—H16A0.9500C16—H160.9500
C7A—Si1A—C8A108.95 (18)C7—Si1—C8108.96 (17)
C7A—Si1A—C1A115.01 (17)C7—Si1—C1113.95 (16)
C8A—Si1A—C1A112.61 (16)C8—Si1—C1114.13 (16)
C7A—Si1A—C11A114.04 (15)C7—Si1—C11114.35 (15)
C8A—Si1A—C11A114.28 (16)C8—Si1—C11113.64 (15)
C1A—Si1A—C11A91.21 (14)C1—Si1—C1191.05 (14)
C6A—C1A—C2A118.6 (3)C6—C1—C2118.7 (3)
C6A—C1A—Si1A132.0 (3)C6—C1—Si1131.9 (3)
C2A—C1A—Si1A109.4 (2)C2—C1—Si1109.4 (2)
C3A—C2A—C1A119.9 (3)C3—C2—C1120.1 (3)
C3A—C2A—C12A125.1 (3)C3—C2—C12124.9 (3)
C1A—C2A—C12A115.0 (3)C1—C2—C12114.9 (3)
C4A—C3A—C2A119.8 (4)C4—C3—C2119.8 (3)
C4A—C3A—H3A120.1C4—C3—H3120.1
C2A—C3A—H3A120.1C2—C3—H3120.1
C5A—C4A—C3A120.7 (3)C3—C4—C5120.7 (3)
C5A—C4A—H4A119.6C3—C4—H4119.7
C3A—C4A—H4A119.6C5—C4—H4119.7
C4A—C5A—C6A120.1 (4)C4—C5—C6119.9 (3)
C4A—C5A—H5A120.0C4—C5—H5120.0
C6A—C5A—H5A120.0C6—C5—H5120.0
C5A—C6A—C1A120.8 (4)C1—C6—C5120.7 (4)
C5A—C6A—H6A119.6C1—C6—H6119.7
C1A—C6A—H6A119.6C5—C6—H6119.7
Si1A—C7A—H7A1109.5Si1—C7—H7A109.5
Si1A—C7A—H7A2109.5Si1—C7—H7B109.5
H7A1—C7A—H7A2109.5H7A—C7—H7B109.5
Si1A—C7A—H7A3109.5Si1—C7—H7C109.5
H7A1—C7A—H7A3109.5H7A—C7—H7C109.5
H7A2—C7A—H7A3109.5H7B—C7—H7C109.5
Si1A—C8A—H8A1109.5Si1—C8—H8A109.5
Si1A—C8A—H8A2109.5Si1—C8—H8B109.5
H8A1—C8A—H8A2109.5H8A—C8—H8B109.5
Si1A—C8A—H8A3109.5Si1—C8—H8C109.5
H8A1—C8A—H8A3109.5H8A—C8—H8C109.5
H8A2—C8A—H8A3109.5H8B—C8—H8C109.5
C16A—C11A—C12A118.5 (3)C16—C11—C12118.4 (3)
C16A—C11A—Si1A132.1 (2)C16—C11—Si1132.3 (2)
C12A—C11A—Si1A109.4 (2)C12—C11—Si1109.3 (2)
C13A—C12A—C11A120.2 (3)C13—C12—C11119.9 (3)
C13A—C12A—C2A124.8 (3)C13—C12—C2124.8 (3)
C11A—C12A—C2A114.9 (3)C11—C12—C2115.3 (3)
C14A—C13A—C12A120.0 (3)C14—C13—C12120.3 (3)
C14A—C13A—H13A120.0C14—C13—H13119.9
C12A—C13A—H13A120.0C12—C13—H13119.9
C13A—C14A—C15A120.4 (3)C13—C14—C15120.7 (3)
C13A—C14A—H14A119.8C13—C14—H14119.7
C15A—C14A—H14A119.8C15—C14—H14119.7
C14A—C15A—C16A119.9 (3)C14—C15—C16119.2 (3)
C14A—C15A—H15A120.0C14—C15—H15120.4
C16A—C15A—H15A120.0C16—C15—H15120.4
C15A—C16A—C11A120.9 (3)C11—C16—C15121.6 (3)
C15A—C16A—H16A119.5C11—C16—H16119.2
C11A—C16A—H16A119.5C15—C16—H16119.2
C7A—Si1A—C1A—C6A−65.4 (4)C7—Si1—C1—C6−60.0 (4)
C8A—Si1A—C1A—C6A60.2 (4)C8—Si1—C1—C666.1 (3)
C11A—Si1A—C1A—C6A177.2 (3)C11—Si1—C1—C6−177.3 (3)
C7A—Si1A—C1A—C2A116.2 (2)C7—Si1—C1—C2119.8 (2)
C8A—Si1A—C1A—C2A−118.1 (2)C8—Si1—C1—C2−114.2 (2)
C11A—Si1A—C1A—C2A−1.1 (2)C11—Si1—C1—C22.4 (2)
C6A—C1A—C2A—C3A2.2 (5)C6—C1—C2—C3−2.6 (4)
Si1A—C1A—C2A—C3A−179.2 (2)Si1—C1—C2—C3177.6 (2)
C6A—C1A—C2A—C12A−176.6 (3)C6—C1—C2—C12176.4 (3)
Si1A—C1A—C2A—C12A2.0 (3)Si1—C1—C2—C12−3.4 (3)
C1A—C2A—C3A—C4A−0.5 (5)C1—C2—C3—C40.7 (5)
C12A—C2A—C3A—C4A178.1 (3)C12—C2—C3—C4−178.1 (3)
C2A—C3A—C4A—C5A−0.7 (5)C2—C3—C4—C50.9 (5)
C3A—C4A—C5A—C6A0.3 (6)C3—C4—C5—C6−0.7 (5)
C4A—C5A—C6A—C1A1.4 (5)C2—C1—C6—C52.8 (5)
C2A—C1A—C6A—C5A−2.6 (5)Si1—C1—C6—C5−177.5 (3)
Si1A—C1A—C6A—C5A179.2 (3)C4—C5—C6—C1−1.2 (5)
C7A—Si1A—C11A—C16A63.3 (4)C7—Si1—C11—C1659.2 (4)
C8A—Si1A—C11A—C16A−62.9 (4)C8—Si1—C11—C16−66.7 (4)
C1A—Si1A—C11A—C16A−178.5 (3)C1—Si1—C11—C16176.2 (3)
C7A—Si1A—C11A—C12A−118.2 (2)C7—Si1—C11—C12−117.9 (2)
C8A—Si1A—C11A—C12A115.5 (2)C8—Si1—C11—C12116.1 (2)
C1A—Si1A—C11A—C12A0.0 (2)C1—Si1—C11—C12−0.9 (2)
C16A—C11A—C12A—C13A0.9 (5)C16—C11—C12—C13−0.7 (5)
Si1A—C11A—C12A—C13A−177.8 (2)Si1—C11—C12—C13176.9 (2)
C16A—C11A—C12A—C2A179.9 (3)C16—C11—C12—C2−178.4 (3)
Si1A—C11A—C12A—C2A1.2 (3)Si1—C11—C12—C2−0.8 (3)
C3A—C2A—C12A—C13A−1.9 (5)C3—C2—C12—C134.2 (5)
C1A—C2A—C12A—C13A176.8 (3)C1—C2—C12—C13−174.7 (3)
C3A—C2A—C12A—C11A179.1 (3)C3—C2—C12—C11−178.2 (3)
C1A—C2A—C12A—C11A−2.2 (4)C1—C2—C12—C112.8 (4)
C11A—C12A—C13A—C14A0.5 (5)C11—C12—C13—C140.1 (5)
C2A—C12A—C13A—C14A−178.4 (3)C2—C12—C13—C14177.6 (3)
C12A—C13A—C14A—C15A−1.3 (5)C12—C13—C14—C150.1 (5)
C13A—C14A—C15A—C16A0.7 (6)C13—C14—C15—C160.3 (6)
C14A—C15A—C16A—C11A0.7 (5)C12—C11—C16—C151.1 (5)
C12A—C11A—C16A—C15A−1.5 (5)Si1—C11—C16—C15−175.9 (3)
Si1A—C11A—C16A—C15A176.8 (3)C14—C15—C16—C11−0.9 (6)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2718).

References

  • Blessing, R. H. (1995). Acta Cryst. A51, 33–38. [PubMed]
  • Hudrlik, P. F., Dai, D. & Hudrlik, A. M. (2006). J. Organomet. Chem.691, 1257–1264.
  • Kaufmann, L., Vitze, H., Bolte, M., Lerner, H.-W. & Wagner, M. (2008). Organometallics, 27, 6215–6221.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Stoe & Cie (2001). X-AREA Stoe & Cie, Darmstadt, Germany.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography