PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 March 1; 65(Pt 3): m335–m336.
Published online 2009 February 28. doi:  10.1107/S1600536809006436
PMCID: PMC2968657

Bis[dichlorido(5,5′-dimethyl-2,2′-bi­pyridine-κ2 N,N′)gold(III)] tetra­chlorido­aurate(III) dichloridooaurate(I)

Abstract

The title compound, [AuIIICl2(C12H12N2)]2[AuIIICl4][AuICl2], contains three distinct types of Au atom. In the cation, the AuIII atom is four-coordinated in a distorted square-planar arrangement by an N,N′-bidentate 5,5′-dimethyl-2,2′-bipyridine ligand and two terminal Cl atoms. In the [AuCl4] anion, the centrosymmetric AuIII atom has a square-planar coordination. The centrosymmetric [AuCl2] anion is linear. Intra- and inter­molecular C—H(...)Cl hydrogen bonds help to establish the conformation and packing.

Related literature

For related stuctures, see: Abbate et al. (2000 [triangle]); Adams & Strähle (1982 [triangle]); Ahmadi, Amani & Khavasi (2008 [triangle]); Ahmadi, Dehghan, Amani & Khavasi (2008 [triangle]); Bjernemose et al. (2004 [triangle]); Hayoun et al. (2006 [triangle]); Hollis & Lippard (1983 [triangle]); McInnes et al. (1995 [triangle]); Yıldırım et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m335-scheme1.jpg

Experimental

Crystal data

  • [AuCl2(C12H12N2)]2[AuCl4][AuCl2]
  • M r = 1510.86
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m335-efi1.jpg
  • a = 9.0698 (4) Å
  • b = 10.0886 (4) Å
  • c = 11.1678 (5) Å
  • α = 91.155 (4)°
  • β = 108.148 (4)°
  • γ = 111.344 (3)°
  • V = 894.09 (7) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 17.13 mm−1
  • T = 295 K
  • 0.41 × 0.28 × 0.08 mm

Data collection

  • Stoe IPDS-2 diffractometer
  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002 [triangle]) T min = 0.054, T max = 0.341
  • 9898 measured reflections
  • 3651 independent reflections
  • 3193 reflections with I > 2σ(I)
  • R int = 0.059

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042
  • wR(F 2) = 0.112
  • S = 1.05
  • 3651 reflections
  • 191 parameters
  • H-atom parameters constrained
  • Δρmax = 1.64 e Å−3
  • Δρmin = −1.91 e Å−3

Data collection: X-AREA (Stoe & Cie, 2002 [triangle]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002 [triangle]); program(s) used to solve structure: SIR97 (Altomare et al., 1999 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809006436/hb2902sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809006436/hb2902Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS-2 diffractometer (purchased under grant F.279 of the University Research Fund). NS, VA and AA are grateful to Shahid Beheshti University for financial support.

supplementary crystallographic information

Comment

Recently, we reported the synthesis and crystal structure of the [Au(dtbpy)Cl2][AuCl4].CH3CN, (II), (Yıldırım et al., 2008) [where dtbpy is 4,4'-di-tert-butyl-2,2'-bipyridine]. There are several AuIII complexes, with formula, [AuCl2 (N—N)]X, such as [AuCl2(bipy)][BF4], (III), (McInnes et al., 1995), [AuCl2(bipy)](NO3), (IV), (Bjernemose et al., 2004), [AuCl2(bipy)][AuBr4], (V), (Hayoun et al., 2006), [AuCl2(dmphen)][AuCl4], (VI), (Ahmadi, Amani et al., 2008) and [AuCl2 (phen)]Cl.H2O, (VII), (Abbate et al., 2000) [where bipy is 2,2'-bipyridine, dmphen is 4,7-diphenyl-1,10-phenanthroline and phen is 1,10-phenanthroline] have been synthesized and characterized by single-crystal X-ray diffraction methods. Two AuIII complexes with formula, [AuCl2L2]X, [AuCl2(py)2][AuCl4], (VIII), and [AuCl2(py)2]Cl.H2O, (IX), (Adams & Strähle 1982) [py is pyridine] and two mixed-valence AuI—AuIII complexes, [Au(terpy)Cl]2[AuCl2]3[AuCl4], (X), (Hollis & Lippard, 1983) and [Au(dmpy)2][AuCl4], (XI), (Ahmadi, Dehghan et al., 2008) [where terpy is 2,2',2''-terpyridine and dmpy is 2,6-dimethylpyridine] have been synthesized and characterized by single-crystal X-ray diffraction methods. We report herein the synthesis and crystal structure of the title compound (I).

In the asymmetric unit of the title compound (I), (Fig. 1), there are one cation and two half-anions. In the cation, the AuIII atom is four-coordinated in a distorted square-planar configuration by two N atoms from the ligand and two terminal Cl atoms. In the anion AuCl4, the AuIII atom has a square-planar coordination. The anion AuCl2 is linear. In the cation, the Au—Cl and Au—N bond lengths and angles (Table 1) are in good agreement with the corresponding values in (II), (III), (IV), (V), (VI), (VII), (VIII), (IX), (X) and, (XI). In the anion, the Au—Cl bond lengths and angles (Table 1) are normal.

Intra and intermolecular C—H···Cl hydrogen bonding interactions (Table 2) stabilize the molecular conformation and the packing arrangement (Fig. 2).

Experimental

A solution of 5,5'-dimethyl-2,2'-bipyridine (0.20 g, 1.09 mmol) in ethanol (20 ml) was added to a solution of HAuCl3.3H2O, (0.37 g, 1.09 mmol) in acetonitrile (20 ml) and the resulting yellow solution was stirred for 10 min at 313 K. Then, it was left to evaporate slowly at room temperature. After one week, yellow prismatic crystals of (I) were isolated (yield 0.28 g, 72.8%; m.p. 553 K).

Refinement

All H-atoms were placed in calculated positions with C—H = 0.93 Å and C—H 0.96 Å, and were included in the refinement in the riding model approximation, with Uiso(H) = 1.2Ueq (ring C) and Uiso(H) = 1.5Ueq (methyl C). In the final Fourier map, the highest and deepest peaks were located 0.91 and 0.81 Å from atom Au1, respectively.

Figures

Fig. 1.
The molecular structure of (I) showing 50% probability displacement ellipsoids for the non-hydrogen atoms. Symmetry code suffixes: (a) –x, –y, –z; (b) 2–x, 1–y, 1–z.
Fig. 2.
A general view of the packing and hydrogen bonding interactions in (I).

Crystal data

[AuCl2(C12H12N2)]2[AuCl4][AuCl2]Z = 1
Mr = 1510.86F(000) = 682
Triclinic, P1Dx = 2.806 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.0698 (4) ÅCell parameters from 16778 reflections
b = 10.0886 (4) Åθ = 1.9–28.0°
c = 11.1678 (5) ŵ = 17.13 mm1
α = 91.155 (4)°T = 295 K
β = 108.148 (4)°Prism, yellow
γ = 111.344 (3)°0.41 × 0.28 × 0.08 mm
V = 894.09 (7) Å3

Data collection

Stoe IPDS-2 diffractometer3651 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus3193 reflections with I > 2σ(I)
plane graphiteRint = 0.059
Detector resolution: 6.67 pixels mm-1θmax = 26.5°, θmin = 1.9°
ω scansh = −10→11
Absorption correction: integration (X-RED32; Stoe & Cie, 2002)k = −12→12
Tmin = 0.054, Tmax = 0.341l = −14→14
9898 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.112w = 1/[σ2(Fo2) + (0.0703P)2 + 0.309P] where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
3651 reflectionsΔρmax = 1.64 e Å3
191 parametersΔρmin = −1.91 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=KFc[1+0.001XFc2Λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0042 (5)

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Au11.23403 (3)0.77774 (3)0.26312 (3)0.0544 (1)
Cl11.2859 (3)0.5914 (3)0.1987 (3)0.0790 (9)
Cl21.5117 (3)0.9173 (3)0.3196 (3)0.0782 (9)
N10.9831 (9)0.6658 (8)0.2201 (7)0.060 (2)
N21.1693 (8)0.9371 (7)0.3140 (6)0.0528 (19)
C10.9039 (11)0.5243 (9)0.1758 (9)0.066 (3)
C20.7317 (12)0.4506 (10)0.1500 (9)0.069 (3)
C30.6467 (11)0.5303 (11)0.1758 (10)0.076 (3)
C40.7298 (11)0.6737 (11)0.2244 (10)0.074 (3)
C50.8990 (11)0.7414 (9)0.2443 (8)0.060 (3)
C60.6455 (15)0.2922 (11)0.1035 (13)0.093 (4)
C71.0005 (10)0.8939 (9)0.2956 (8)0.056 (3)
C80.9407 (12)0.9933 (11)0.3240 (10)0.069 (3)
C91.0501 (13)1.1320 (11)0.3714 (11)0.076 (3)
C101.2194 (13)1.1753 (9)0.3894 (10)0.070 (3)
C111.2737 (11)1.0742 (9)0.3607 (8)0.060 (3)
C121.3426 (14)1.3307 (10)0.4439 (12)0.082 (4)
Au20.000000.000000.000000.0681 (2)
Cl30.2497 (5)−0.0056 (5)0.0129 (5)0.1187 (16)
Cl40.1272 (6)0.2391 (3)0.0717 (3)0.1093 (12)
Au31.000000.500000.500000.0654 (2)
Cl51.2288 (4)0.7061 (3)0.5439 (3)0.0836 (7)*
H10.966200.473700.161900.0790*
H30.531500.486100.160100.0910*
H40.671600.725400.243800.0880*
H6A0.621700.242300.171900.1400*
H6B0.717500.259900.074300.1400*
H6C0.542100.272800.034600.1400*
H80.826600.966000.311000.0820*
H91.009901.198800.392000.0910*
H111.387801.101000.374000.0730*
H12A1.384401.341200.535200.1240*
H12B1.285701.394600.417900.1240*
H12C1.435101.354000.412700.1240*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Au10.0476 (2)0.0555 (2)0.0651 (2)0.0246 (1)0.0206 (1)0.0069 (1)
Cl10.0748 (14)0.0681 (12)0.1089 (19)0.0387 (10)0.0390 (13)0.0006 (12)
Cl20.0476 (10)0.0728 (13)0.113 (2)0.0220 (9)0.0284 (11)0.0031 (13)
N10.053 (3)0.062 (4)0.059 (4)0.019 (3)0.017 (3)0.002 (3)
N20.051 (3)0.060 (3)0.053 (4)0.025 (3)0.021 (3)0.009 (3)
C10.062 (5)0.057 (4)0.074 (6)0.015 (4)0.027 (4)0.002 (4)
C20.067 (5)0.066 (5)0.062 (5)0.015 (4)0.022 (4)0.000 (4)
C30.051 (5)0.080 (6)0.079 (6)0.007 (4)0.023 (4)0.003 (5)
C40.043 (4)0.072 (5)0.091 (7)0.007 (4)0.021 (4)0.005 (5)
C50.057 (4)0.066 (5)0.061 (5)0.025 (4)0.025 (4)0.011 (4)
C60.077 (7)0.072 (6)0.107 (9)0.005 (5)0.031 (6)−0.010 (6)
C70.050 (4)0.062 (4)0.060 (5)0.028 (3)0.018 (3)0.006 (4)
C80.061 (5)0.078 (5)0.079 (6)0.036 (4)0.030 (4)0.012 (5)
C90.085 (6)0.071 (5)0.094 (7)0.047 (5)0.040 (5)0.009 (5)
C100.084 (6)0.054 (4)0.071 (6)0.027 (4)0.026 (5)0.011 (4)
C110.060 (5)0.060 (4)0.062 (5)0.031 (4)0.014 (4)0.006 (4)
C120.087 (7)0.057 (5)0.103 (8)0.031 (4)0.029 (6)0.007 (5)
Au20.0810 (3)0.0527 (3)0.0547 (3)0.0170 (2)0.0130 (2)0.0067 (2)
Cl30.098 (2)0.133 (3)0.127 (3)0.052 (2)0.033 (2)0.018 (2)
Cl40.160 (3)0.0549 (12)0.0797 (18)0.0144 (15)0.0305 (19)0.0013 (11)
Au30.0724 (3)0.0670 (3)0.0672 (3)0.0335 (2)0.0296 (2)0.0161 (2)

Geometric parameters (Å, °)

Au1—N12.028 (9)C5—C71.466 (12)
Au1—N22.027 (7)C7—C81.375 (15)
Au1—Cl12.252 (3)C8—C91.362 (15)
Au1—Cl22.262 (3)C9—C101.380 (18)
Au2—Cl4i2.261 (3)C10—C111.355 (15)
Au2—Cl3i2.246 (5)C10—C121.530 (14)
Au2—Cl32.246 (5)C1—H10.9300
Au2—Cl42.261 (3)C3—H30.9300
Au3—Cl5ii2.248 (3)C4—H40.9300
Au3—Cl52.248 (3)C6—H6B0.9600
N1—C11.343 (12)C6—H6A0.9600
N1—C51.334 (13)C6—H6C0.9600
N2—C71.375 (13)C8—H80.9300
N2—C111.339 (11)C9—H90.9300
C1—C21.393 (15)C11—H110.9300
C2—C31.380 (16)C12—H12C0.9600
C2—C61.496 (14)C12—H12A0.9600
C3—C41.369 (15)C12—H12B0.9600
C4—C51.375 (15)
Au1···Cl3iii3.588 (5)N1···C72.368 (12)
Au1···Cl53.243 (3)N1···Cl13.173 (9)
Au2···C7iv3.490 (8)N2···Cl23.165 (9)
Au2···C7v3.490 (8)N2···N12.619 (10)
Au3···C13.486 (9)N2···C52.396 (12)
Au3···C1ii3.486 (9)C1···Au33.486 (9)
Cl1···Cl4vi3.394 (4)C1···Au33.486 (9)
Cl1···N13.173 (9)C3···Cl1viii3.625 (12)
Cl1···C13.203 (11)C5···Cl4iv3.477 (9)
Cl1···Cl23.166 (4)C6···Cl33.564 (14)
Cl1···C3vi3.625 (12)C7···Au2iv3.490 (8)
Cl2···N23.165 (9)C7···Au2iii3.490 (8)
Cl2···C113.233 (11)C8···Cl3iv3.644 (12)
Cl2···Cl13.166 (4)C10···Cl4iii3.513 (11)
Cl2···C11vii3.476 (9)C11···Cl2vii3.476 (9)
Cl2···Cl5vii3.650 (4)C12···C12xi3.448 (15)
Cl3···C63.564 (14)C4···H82.8100
Cl3···C8iv3.644 (12)C8···H42.7900
Cl3···Cl43.185 (7)H1···Cl12.5900
Cl3···Au1v3.588 (5)H1···H6B2.3900
Cl3···Cl4i3.188 (7)H3···Cl1viii2.9300
Cl4···Cl3i3.188 (7)H3···H6C2.5900
Cl4···C10v3.513 (11)H4···C82.7900
Cl4···C5iv3.477 (9)H4···Cl1viii3.1200
Cl4···Cl33.185 (7)H4···Cl2viii3.0500
Cl4···Cl1viii3.394 (4)H4···H82.2800
Cl4···N1iv3.367 (8)H6A···Cl5ii2.9900
Cl5···Au13.243 (3)H6B···H12.3900
Cl5···Cl2vii3.650 (4)H6B···Cl3ix2.8700
Cl1···H4vi3.1200H6C···H32.5900
Cl1···H12.5900H6C···Cl33.0200
Cl1···H3vi2.9300H8···H42.2800
Cl2···H8vi2.7500H8···C42.8100
Cl2···H112.6400H8···Cl2viii2.7500
Cl2···H4vi3.0500H9···H12B2.4800
Cl3···H6C3.0200H9···Cl5x2.9300
Cl3···H6Bix2.8700H11···Cl22.6400
Cl5···H11vii3.1200H11···H12C2.4300
Cl5···H6Aii2.9900H11···Cl5vii3.1200
Cl5···H9x2.9300H12B···H92.4800
N1···Cl4iv3.367 (8)H12C···H112.4300
N1···N22.619 (10)
Cl1—Au1—Cl289.07 (11)C7—C8—C9119.4 (11)
Cl1—Au1—N195.5 (2)C8—C9—C10121.3 (11)
Cl1—Au1—N2175.8 (2)C11—C10—C12121.1 (11)
Cl2—Au1—N1175.3 (2)C9—C10—C11117.6 (9)
Cl2—Au1—N295.0 (2)C9—C10—C12121.3 (10)
N1—Au1—N280.5 (3)N2—C11—C10122.5 (10)
Cl3i—Au2—Cl4i89.95 (19)C2—C1—H1119.00
Cl3—Au2—Cl4i90.05 (19)N1—C1—H1119.00
Cl3—Au2—Cl489.95 (19)C2—C3—H3120.00
Cl3—Au2—Cl3i180.00C4—C3—H3120.00
Cl3i—Au2—Cl490.05 (19)C3—C4—H4120.00
Cl4—Au2—Cl4i180.00C5—C4—H4120.00
Cl5—Au3—Cl5ii180.00C2—C6—H6A109.00
Au1—N1—C1124.0 (7)C2—C6—H6B109.00
Au1—N1—C5115.3 (6)C2—C6—H6C109.00
C1—N1—C5120.7 (9)H6B—C6—H6C109.00
Au1—N2—C11126.2 (7)H6A—C6—H6B109.00
Au1—N2—C7113.9 (5)H6A—C6—H6C109.00
C7—N2—C11120.0 (8)C7—C8—H8120.00
N1—C1—C2122.3 (10)C9—C8—H8120.00
C3—C2—C6121.8 (11)C10—C9—H9119.00
C1—C2—C3116.3 (9)C8—C9—H9119.00
C1—C2—C6121.8 (10)N2—C11—H11119.00
C2—C3—C4120.9 (10)C10—C11—H11119.00
C3—C4—C5120.1 (10)C10—C12—H12A110.00
N1—C5—C4119.7 (8)C10—C12—H12B109.00
N1—C5—C7115.4 (9)C10—C12—H12C109.00
C4—C5—C7124.8 (9)H12A—C12—H12B109.00
N2—C7—C5115.0 (8)H12A—C12—H12C109.00
N2—C7—C8119.3 (8)H12B—C12—H12C109.00
C5—C7—C8125.8 (9)
Cl1—Au1—N1—C13.4 (7)C11—N2—C7—C80.9 (12)
N2—Au1—N1—C1−177.7 (8)N1—C1—C2—C3−1.7 (14)
Cl1—Au1—N1—C5−179.5 (6)N1—C1—C2—C6−178.6 (10)
N2—Au1—N1—C5−0.7 (6)C6—C2—C3—C4176.7 (10)
Cl2—Au1—N2—C7−179.0 (5)C1—C2—C3—C4−0.2 (15)
N1—Au1—N2—C70.0 (6)C2—C3—C4—C52.1 (16)
Cl2—Au1—N2—C111.5 (7)C3—C4—C5—C7180.0 (9)
N1—Au1—N2—C11−179.5 (7)C3—C4—C5—N1−2.2 (14)
Au1—N1—C1—C2178.6 (7)C4—C5—C7—N2176.7 (8)
C5—N1—C1—C21.7 (14)C4—C5—C7—C8−4.2 (15)
Au1—N1—C5—C4−176.8 (7)N1—C5—C7—N2−1.2 (11)
C1—N1—C5—C40.4 (13)N1—C5—C7—C8177.9 (9)
Au1—N1—C5—C71.2 (10)C5—C7—C8—C9180.0 (9)
C1—N1—C5—C7178.4 (8)N2—C7—C8—C9−0.9 (14)
Au1—N2—C11—C10178.3 (7)C7—C8—C9—C101.1 (16)
C7—N2—C11—C10−1.1 (13)C8—C9—C10—C11−1.3 (16)
Au1—N2—C7—C8−178.6 (7)C8—C9—C10—C12−179.4 (10)
Au1—N2—C7—C50.6 (9)C12—C10—C11—N2179.4 (9)
C11—N2—C7—C5−179.9 (7)C9—C10—C11—N21.3 (14)

Symmetry codes: (i) −x, −y, −z; (ii) −x+2, −y+1, −z+1; (iii) x+1, y+1, z; (iv) −x+1, −y+1, −z; (v) x−1, y−1, z; (vi) x+1, y, z; (vii) −x+3, −y+2, −z+1; (viii) x−1, y, z; (ix) −x+1, −y, −z; (x) −x+2, −y+2, −z+1; (xi) −x+3, −y+3, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C1—H1···Cl10.932.593.203 (11)124
C8—H8···Cl2viii0.932.753.666 (12)169
C11—H11···Cl20.932.643.233 (11)122

Symmetry codes: (viii) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2902).

References

  • Abbate, F., Orioli, P., Bruni, B., Marcon, G. & Messori, L. (2000). Inorg. Chim. Acta, 311, 1–5.
  • Adams, H. N. & Strähle, J. (1982). Z. Anorg. Allg. Chem.485, 65–80.
  • Ahmadi, R., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1156–m1157. [PMC free article] [PubMed]
  • Ahmadi, R., Dehghan, L., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1237. [PMC free article] [PubMed]
  • Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  • Bjernemose, J. K., Raithby, P. R. & Toftlund, H. (2004). Acta Cryst. E60, m1719–m1721.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Hayoun, R., Zhong, D. K., Rheingold, A. L. & Doerrer, L. H. (2006). Inorg. Chem.45, 6120–6122. [PubMed]
  • Hollis, L. S. & Lippard, S. J. (1983). J. Am. Chem. Soc.105, 4293–4299.
  • McInnes, E. J. L., Welch, A. J. & Yellowlees, L. J. (1995). Acta Cryst. C51, 2023–2025.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Stoe & Cie (2002). X-AREA and X-RED32 Stoe & Cie, Darmstadt, Germany.
  • Yıldırım, S. Ö., Akkurt, M., Safari, N., Amani, V., McKee, V., Abedi, A. & Khavasi, H. R. (2008). Acta Cryst. E64, m1189–m1190. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography