PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 March 1; 65(Pt 3): o576.
Published online 2009 February 21. doi:  10.1107/S160053680900573X
PMCID: PMC2968648

2,4-Dimethyl-N-phenyl­benzene­sulfonamide

Abstract

The asymmetric unit of the crystal structure of the title compound, C14H15NO2S, contains two mol­ecules. The conformations of the N—C bonds in the C—SO2—NH—C segments of the structure have trans and gauche torsion angles with the S=O bonds. Furthermore, the torsion angles of the C—SO2—NH—C groups in the two mol­ecules are 46.1 (3) (glide image of mol­ecule 1) and 47.7 (3)° (mol­ecule 2). The ortho-methyl groups in the sulfonyl benzene ring are oriented away from the S=O bonds. The two benzene rings are tilted relative to each other by 67.5 (1) and 72.9 (1)° in the two mol­ecules. N—H(...)O and C—H(...)O hydrogen bonds pack the mol­ecules into one-dimensional chains in different directions, resulting in a two-dimensional network.

Related literature

For related structures, see: Gelbrich et al. (2007 [triangle]); Gowda et al. (2008a [triangle],b [triangle],c [triangle]); Perlovich et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o576-scheme1.jpg

Experimental

Crystal data

  • C14H15NO2S
  • M r = 261.33
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o576-efi1.jpg
  • a = 19.113 (3) Å
  • b = 8.9290 (8) Å
  • c = 15.781 (1) Å
  • V = 2693.2 (5) Å3
  • Z = 8
  • Cu Kα radiation
  • μ = 2.09 mm−1
  • T = 299 K
  • 0.50 × 0.43 × 0.25 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: ψ scan (North et al., 1968 [triangle]) T min = 0.401, T max = 0.593
  • 4916 measured reflections
  • 2505 independent reflections
  • 2421 reflections with I > 2σ(I)
  • R int = 0.050
  • 3 standard reflections frequency: 120 min intensity decay: 1.0%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034
  • wR(F 2) = 0.090
  • S = 1.09
  • 2505 reflections
  • 330 parameters
  • 7 restraints
  • H-atom parameters constrained
  • Δρmax = 0.26 e Å−3
  • Δρmin = −0.23 e Å−3
  • Absolute structure: Flack (1983 [triangle]), no Friedel pairs
  • Flack parameter: 0.008 (17)

Data collection: CAD-4-PC (Enraf–Nonius, 1996 [triangle]); cell refinement: CAD-4-PC; data reduction: REDU4 (Stoe & Cie, 1987 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680900573X/kj2115sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680900573X/kj2115Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for extensions of his research fellowship.

supplementary crystallographic information

Comment

As part of a study of the substituent effects on the crystal structures of N-(aryl)-arylsulfonamides (Gowda et al., 2008a, b, c), in the present work, the structure of N-(phenyl)-2,4-dimethylbenzenesulfonamide has been determined . The asymmetric unit contains 2 molecules (Fig. 1). The conformations of the N—C bonds in the C—SO2—NH—C segments of the structure have "trans" torsions and "gauche" torsions with the S═O bonds. Further, the torsion angles of the C—SO2—NH—C groups in the two molecules are 46.1 (3)° (glide image of molecule 1) and 47.7 (3)° (molecule 2). The ortho-methyl groups in the sulfonyl benzene rings orient themselves away from the S═O bonds, but in the direction of N—H bonds. The two benzene rings in the title compound are tilted relative to each other by 67.5 (1)° in the molecule 1 and 72.9 (1)° in molecule 2. The other bond parameters in the title compound are similar to those observed in N-(2,6-dimethylphenyl)-benzenesulfonamide (Gowda et al., 2008a), N-(2-methylphenyl)-benzenesulfonamide (Gowda et al., 2008b)) and other aryl sulfonamides (Perlovich et al., 2006; Gelbrich et al., 2007; Gowda et al., 2008c). The N-H···O hydrogen bonds pack the molecules into a 1D chain in the direction of c- axis, while C-H···O hydrogen bonds pack them into a 1D chain in the direction of b-axis, resulting in a 2D network (Table 1, Fig. 2).

Experimental

A solution of 1,3-xylene (10 ml) in chloroform (40 ml) was treated dropwise with chlorosulfonic acid (25 ml) at 273K. After the initial evolution of hydrogen chloride subsided, the reaction mixture was brought to room temperature and poured into crushed ice in a beaker. The chloroform layer was separated, washed with cold water and allowed to evaporate slowly. The residual 2,4-dimethylbenzenesulfonylchloride was treated with aniline in the stoichiometric ratio and boiled for ten minutes. The reaction mixture was then cooled to room temperature and added to ice cold water (100 ml). The resultant solid N-(phenyl)-2,4-dimethylbenzenesulfonamide was filtered under suction and washed thoroughly with cold water. It was then recrystallized to constant melting point from dilute ethanol. The purity of the compound was checked and characterized by recording its infrared and NMR spectra. The single crystals used in X-ray diffraction studies were grown in ethanolic solution by slow evaporation at room temperature.

Refinement

The H atoms were positioned with idealized geometry using a riding model with C—H = 0.93–0.96 Å, N—H = 0.86 Å, and were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom). The Uij components of C28 were restrained to approximate isotropic behavior.

Figures

Fig. 1.
Molecular structure of the title compound, showing the atom labeling scheme. The displacement ellipsoids are drawn at the 50% probability level. The H atoms are represented as small spheres of arbitrary radii.
Fig. 2.
Molecular packing of the title compound with hydrogen bonding shown as dashed lines. H-atoms not involved in hydrogen bonding have been omitted.

Crystal data

C14H15NO2SF(000) = 1104
Mr = 261.33Dx = 1.289 Mg m3
Orthorhombic, Pca21Cu Kα radiation, λ = 1.54180 Å
Hall symbol: P 2c -2acCell parameters from 25 reflections
a = 19.113 (3) Åθ = 4.6–19.0°
b = 8.9290 (8) ŵ = 2.09 mm1
c = 15.781 (1) ÅT = 299 K
V = 2693.2 (5) Å3Prism, colourless
Z = 80.50 × 0.43 × 0.25 mm

Data collection

Enraf–Nonius CAD-4 diffractometer2421 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.050
graphiteθmax = 66.9°, θmin = 4.6°
ω/2θ scansh = −22→22
Absorption correction: ψ scan (North et al., 1968)k = −10→0
Tmin = 0.401, Tmax = 0.593l = −18→0
4916 measured reflections3 standard reflections every 120 min
2505 independent reflections intensity decay: 1.0%

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.034w = 1/[σ2(Fo2) + (0.0565P)2 + 0.1061P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.090(Δ/σ)max = 0.012
S = 1.09Δρmax = 0.26 e Å3
2505 reflectionsΔρmin = −0.23 e Å3
330 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
7 restraintsExtinction coefficient: 0.0032 (3)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), no Friedel pairs
Secondary atom site location: difference Fourier mapFlack parameter: 0.008 (17)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.25250 (4)0.26684 (7)0.22911 (5)0.05031 (19)
O10.18269 (11)0.3237 (2)0.23659 (15)0.0594 (5)
O20.26004 (13)0.1099 (2)0.21441 (18)0.0702 (7)
N10.29100 (14)0.3475 (3)0.14888 (15)0.0544 (5)
H1N0.30020.29480.10460.065*
C10.29873 (15)0.3238 (3)0.32001 (19)0.0520 (6)
C20.36811 (17)0.2791 (4)0.3346 (2)0.0603 (7)
C30.39906 (19)0.3302 (5)0.4076 (3)0.0763 (10)
H30.44480.30040.41880.092*
C40.36652 (19)0.4232 (5)0.4657 (2)0.0767 (9)
C50.2984 (2)0.4650 (4)0.4490 (2)0.0737 (9)
H50.27480.52660.48690.088*
C60.26517 (16)0.4164 (3)0.3769 (2)0.0587 (6)
H60.21940.44640.36630.070*
C70.31002 (15)0.5019 (3)0.14938 (15)0.0472 (5)
C80.37518 (17)0.5411 (3)0.11944 (17)0.0559 (6)
H80.40670.46790.10220.067*
C90.3931 (2)0.6918 (4)0.1154 (2)0.0679 (9)
H90.43630.72000.09350.081*
C100.3472 (2)0.7996 (3)0.1438 (2)0.0693 (9)
H100.35960.90030.14140.083*
C110.2844 (2)0.7591 (3)0.1749 (3)0.0706 (8)
H110.25390.83230.19470.085*
C120.26465 (19)0.6103 (3)0.1777 (2)0.0633 (7)
H120.22090.58360.19870.076*
C130.4085 (2)0.1767 (5)0.2756 (3)0.0844 (12)
H13A0.41310.22370.22110.101*
H13B0.38380.08370.26950.101*
H13C0.45410.15790.29870.101*
C140.4032 (3)0.4784 (9)0.5438 (3)0.1129 (18)
H14A0.45240.45850.53920.135*
H14B0.38480.42780.59270.135*
H14C0.39590.58430.54970.135*
S20.58393 (3)0.79647 (7)0.45792 (4)0.04598 (18)
O30.61521 (12)0.8591 (3)0.53213 (13)0.0605 (5)
O40.59126 (13)0.6383 (2)0.44450 (15)0.0665 (6)
N20.61782 (13)0.8727 (3)0.37433 (15)0.0509 (5)
H2N0.64310.81640.34240.061*
C150.49526 (13)0.8489 (3)0.45929 (17)0.0496 (5)
C160.44843 (19)0.7964 (4)0.3987 (2)0.0673 (9)
C170.3784 (2)0.8473 (6)0.4075 (3)0.0906 (14)
H170.34540.81400.36840.109*
C180.35654 (19)0.9422 (6)0.4700 (3)0.0949 (15)
C190.4042 (2)0.9912 (6)0.5270 (3)0.0854 (12)
H190.39041.05670.56970.102*
C200.47306 (17)0.9454 (4)0.52259 (19)0.0634 (8)
H200.50500.97970.56260.076*
C210.60945 (12)1.0244 (3)0.34916 (17)0.0451 (5)
C220.60950 (17)1.1394 (3)0.4086 (2)0.0569 (6)
H220.61381.11850.46600.068*
C230.6030 (2)1.2854 (4)0.3806 (3)0.0678 (9)
H230.60191.36290.41990.081*
C240.5981 (2)1.3182 (4)0.2961 (3)0.0686 (9)
H240.59451.41720.27820.082*
C250.5986 (2)1.2031 (4)0.2377 (3)0.0692 (8)
H250.59561.22440.18010.083*
C260.60355 (16)1.0569 (3)0.26450 (18)0.0555 (7)
H260.60290.97970.22500.067*
C270.4682 (3)0.6917 (6)0.3282 (3)0.1016 (16)
H27A0.48950.60340.35160.122*
H27B0.50080.74050.29100.122*
H27C0.42710.66410.29700.122*
C280.2808 (2)0.9939 (10)0.4738 (4)0.136 (2)
H28A0.25420.92550.50790.164*
H28B0.26170.99660.41750.164*
H28C0.27871.09220.49830.164*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0539 (3)0.0320 (3)0.0650 (4)−0.0034 (3)0.0112 (3)0.0002 (3)
O10.0510 (9)0.0539 (10)0.0733 (12)−0.0010 (9)0.0070 (10)0.0024 (11)
O20.0789 (14)0.0290 (9)0.1028 (18)−0.0078 (10)0.0143 (12)−0.0020 (11)
N10.0726 (13)0.0345 (10)0.0562 (11)−0.0029 (11)0.0167 (11)−0.0072 (9)
C10.0531 (13)0.0439 (13)0.0591 (14)−0.0029 (12)0.0083 (12)0.0089 (11)
C20.0536 (14)0.0536 (15)0.0736 (18)0.0048 (12)0.0098 (13)0.0140 (14)
C30.0591 (16)0.086 (3)0.084 (2)−0.0040 (18)−0.0014 (16)0.021 (2)
C40.0737 (18)0.087 (2)0.0698 (18)−0.0161 (18)−0.0008 (17)0.0115 (19)
C50.0827 (19)0.073 (2)0.0654 (17)−0.0087 (18)0.0111 (16)−0.0025 (17)
C60.0586 (14)0.0540 (15)0.0634 (15)−0.0009 (13)0.0099 (12)−0.0011 (13)
C70.0647 (14)0.0334 (11)0.0434 (10)−0.0016 (11)0.0072 (11)−0.0012 (9)
C80.0702 (15)0.0467 (15)0.0509 (12)−0.0030 (14)0.0146 (12)−0.0053 (11)
C90.084 (2)0.0538 (18)0.0657 (17)−0.0167 (17)0.0161 (17)0.0060 (14)
C100.101 (2)0.0387 (13)0.0684 (17)−0.0104 (15)0.0068 (18)0.0037 (13)
C110.094 (2)0.0341 (13)0.084 (2)0.0069 (16)0.0097 (19)−0.0004 (14)
C120.0739 (18)0.0386 (13)0.0774 (19)0.0019 (14)0.0182 (15)0.0022 (14)
C130.0657 (19)0.079 (2)0.109 (3)0.023 (2)0.0120 (19)0.004 (2)
C140.118 (3)0.141 (5)0.080 (2)−0.039 (4)−0.019 (3)0.003 (3)
S20.0532 (3)0.0368 (3)0.0479 (3)0.0046 (2)−0.0059 (2)0.0046 (2)
O30.0603 (11)0.0653 (13)0.0561 (10)0.0023 (10)−0.0154 (9)0.0038 (10)
O40.0918 (14)0.0341 (9)0.0735 (13)0.0111 (10)−0.0019 (11)0.0091 (10)
N20.0620 (12)0.0344 (10)0.0564 (11)0.0082 (10)0.0091 (10)−0.0013 (9)
C150.0500 (11)0.0483 (12)0.0505 (12)−0.0020 (11)−0.0022 (11)0.0131 (11)
C160.0647 (17)0.0704 (19)0.0669 (17)−0.0195 (16)−0.0227 (15)0.0204 (15)
C170.063 (2)0.107 (3)0.102 (3)−0.021 (2)−0.027 (2)0.044 (3)
C180.0586 (17)0.117 (4)0.109 (3)0.010 (2)0.013 (2)0.062 (3)
C190.073 (2)0.097 (3)0.086 (2)0.021 (2)0.0239 (19)0.028 (2)
C200.0652 (17)0.0663 (18)0.0587 (15)0.0104 (15)0.0058 (12)0.0105 (14)
C210.0425 (10)0.0360 (12)0.0569 (13)0.0015 (10)0.0081 (10)0.0029 (10)
C220.0685 (16)0.0403 (14)0.0618 (14)−0.0002 (13)0.0056 (13)−0.0040 (12)
C230.077 (2)0.0372 (13)0.089 (2)−0.0024 (14)0.0117 (18)−0.0048 (15)
C240.0722 (18)0.0446 (17)0.089 (2)−0.0011 (15)0.0141 (18)0.0130 (16)
C250.0773 (18)0.0575 (19)0.073 (2)0.0020 (15)0.0124 (17)0.0208 (17)
C260.0635 (14)0.0470 (15)0.0559 (14)0.0000 (13)0.0099 (12)0.0021 (12)
C270.125 (4)0.095 (3)0.084 (3)−0.024 (3)−0.038 (3)−0.015 (2)
C280.065 (2)0.177 (5)0.167 (5)0.019 (3)0.018 (3)0.071 (5)

Geometric parameters (Å, °)

S1—O21.4278 (19)S2—O31.429 (2)
S1—O11.433 (2)S2—O41.435 (2)
S1—N11.632 (2)S2—N21.619 (2)
S1—C11.760 (3)S2—C151.758 (3)
N1—C71.426 (3)N2—C211.421 (3)
N1—H1N0.8600N2—H2N0.8600
C1—C61.379 (4)C15—C201.386 (4)
C1—C21.404 (4)C15—C161.391 (4)
C2—C31.373 (6)C16—C171.421 (6)
C2—C131.517 (5)C16—C271.501 (6)
C3—C41.384 (6)C17—C181.366 (8)
C3—H30.9300C17—H170.9300
C4—C51.380 (6)C18—C191.354 (7)
C4—C141.502 (6)C18—C281.520 (6)
C5—C61.373 (5)C19—C201.379 (5)
C5—H50.9300C19—H190.9300
C6—H60.9300C20—H200.9300
C7—C121.374 (4)C21—C261.372 (4)
C7—C81.377 (4)C21—C221.390 (4)
C8—C91.390 (4)C22—C231.382 (4)
C8—H80.9300C22—H220.9300
C9—C101.377 (6)C23—C241.367 (6)
C9—H90.9300C23—H230.9300
C10—C111.347 (6)C24—C251.381 (6)
C10—H100.9300C24—H240.9300
C11—C121.382 (4)C25—C261.375 (4)
C11—H110.9300C25—H250.9300
C12—H120.9300C26—H260.9300
C13—H13A0.9600C27—H27A0.9600
C13—H13B0.9600C27—H27B0.9600
C13—H13C0.9600C27—H27C0.9600
C14—H14A0.9600C28—H28A0.9600
C14—H14B0.9600C28—H28B0.9600
C14—H14C0.9600C28—H28C0.9600
O2—S1—O1117.09 (14)O3—S2—O4117.71 (14)
O2—S1—N1105.17 (14)O3—S2—N2109.64 (12)
O1—S1—N1109.11 (13)O4—S2—N2104.73 (13)
O2—S1—C1111.43 (15)O3—S2—C15106.81 (14)
O1—S1—C1107.33 (13)O4—S2—C15110.97 (14)
N1—S1—C1106.18 (12)N2—S2—C15106.48 (12)
C7—N1—S1122.50 (18)C21—N2—S2125.67 (18)
C7—N1—H1N118.7C21—N2—H2N117.2
S1—N1—H1N118.7S2—N2—H2N117.2
C6—C1—C2120.2 (3)C20—C15—C16120.5 (3)
C6—C1—S1118.1 (2)C20—C15—S2118.0 (2)
C2—C1—S1121.7 (2)C16—C15—S2121.5 (3)
C3—C2—C1116.8 (3)C15—C16—C17115.6 (4)
C3—C2—C13119.8 (3)C15—C16—C27123.8 (4)
C1—C2—C13123.4 (3)C17—C16—C27120.6 (4)
C2—C3—C4124.1 (3)C18—C17—C16123.8 (4)
C2—C3—H3117.9C18—C17—H17118.1
C4—C3—H3117.9C16—C17—H17118.1
C5—C4—C3117.4 (4)C19—C18—C17118.4 (4)
C5—C4—C14120.6 (4)C19—C18—C28121.1 (6)
C3—C4—C14122.0 (4)C17—C18—C28120.5 (5)
C6—C5—C4120.6 (4)C18—C19—C20120.9 (5)
C6—C5—H5119.7C18—C19—H19119.6
C4—C5—H5119.7C20—C19—H19119.6
C5—C6—C1120.9 (3)C19—C20—C15120.8 (4)
C5—C6—H6119.5C19—C20—H20119.6
C1—C6—H6119.5C15—C20—H20119.6
C12—C7—C8120.2 (3)C26—C21—C22120.0 (3)
C12—C7—N1121.4 (3)C26—C21—N2118.9 (2)
C8—C7—N1118.3 (2)C22—C21—N2121.0 (3)
C7—C8—C9118.9 (3)C23—C22—C21118.8 (3)
C7—C8—H8120.5C23—C22—H22120.6
C9—C8—H8120.5C21—C22—H22120.6
C10—C9—C8120.4 (3)C24—C23—C22121.3 (3)
C10—C9—H9119.8C24—C23—H23119.3
C8—C9—H9119.8C22—C23—H23119.3
C11—C10—C9119.9 (3)C23—C24—C25119.4 (3)
C11—C10—H10120.1C23—C24—H24120.3
C9—C10—H10120.1C25—C24—H24120.3
C10—C11—C12120.9 (3)C26—C25—C24120.1 (4)
C10—C11—H11119.6C26—C25—H25120.0
C12—C11—H11119.6C24—C25—H25120.0
C7—C12—C11119.6 (3)C21—C26—C25120.4 (3)
C7—C12—H12120.2C21—C26—H26119.8
C11—C12—H12120.2C25—C26—H26119.8
C2—C13—H13A109.5C16—C27—H27A109.5
C2—C13—H13B109.5C16—C27—H27B109.5
H13A—C13—H13B109.5H27A—C27—H27B109.5
C2—C13—H13C109.5C16—C27—H27C109.5
H13A—C13—H13C109.5H27A—C27—H27C109.5
H13B—C13—H13C109.5H27B—C27—H27C109.5
C4—C14—H14A109.5C18—C28—H28A109.5
C4—C14—H14B109.5C18—C28—H28B109.5
H14A—C14—H14B109.5H28A—C28—H28B109.5
C4—C14—H14C109.5C18—C28—H28C109.5
H14A—C14—H14C109.5H28A—C28—H28C109.5
H14B—C14—H14C109.5H28B—C28—H28C109.5
O2—S1—N1—C7−164.3 (2)O3—S2—N2—C21−67.5 (3)
O1—S1—N1—C769.3 (3)O4—S2—N2—C21165.3 (2)
C1—S1—N1—C7−46.1 (3)C15—S2—N2—C2147.7 (3)
O2—S1—C1—C6−133.9 (2)O3—S2—C15—C205.2 (3)
O1—S1—C1—C6−4.5 (3)O4—S2—C15—C20134.7 (2)
N1—S1—C1—C6112.1 (2)N2—S2—C15—C20−111.9 (2)
O2—S1—C1—C247.0 (3)O3—S2—C15—C16−175.1 (2)
O1—S1—C1—C2176.5 (2)O4—S2—C15—C16−45.6 (3)
N1—S1—C1—C2−67.0 (3)N2—S2—C15—C1667.8 (3)
C6—C1—C2—C31.0 (4)C20—C15—C16—C17−0.5 (4)
S1—C1—C2—C3−180.0 (3)S2—C15—C16—C17179.8 (2)
C6—C1—C2—C13179.5 (3)C20—C15—C16—C27−180.0 (3)
S1—C1—C2—C13−1.4 (4)S2—C15—C16—C270.4 (5)
C1—C2—C3—C4−1.0 (5)C15—C16—C17—C180.4 (6)
C13—C2—C3—C4−179.6 (4)C27—C16—C17—C18179.9 (4)
C2—C3—C4—C50.8 (6)C16—C17—C18—C190.1 (6)
C2—C3—C4—C14−178.8 (4)C16—C17—C18—C28178.7 (4)
C3—C4—C5—C6−0.6 (5)C17—C18—C19—C20−0.6 (6)
C14—C4—C5—C6179.0 (4)C28—C18—C19—C20−179.2 (4)
C4—C5—C6—C10.6 (5)C18—C19—C20—C150.5 (6)
C2—C1—C6—C5−0.8 (5)C16—C15—C20—C190.1 (5)
S1—C1—C6—C5−179.9 (3)S2—C15—C20—C19179.8 (3)
S1—N1—C7—C12−45.2 (4)S2—N2—C21—C26−142.9 (2)
S1—N1—C7—C8135.7 (2)S2—N2—C21—C2239.2 (4)
C12—C7—C8—C9−2.4 (5)C26—C21—C22—C230.5 (4)
N1—C7—C8—C9176.7 (3)N2—C21—C22—C23178.4 (3)
C7—C8—C9—C102.2 (5)C21—C22—C23—C24−1.5 (6)
C8—C9—C10—C11−0.5 (6)C22—C23—C24—C251.0 (6)
C9—C10—C11—C12−1.0 (6)C23—C24—C25—C260.4 (6)
C8—C7—C12—C111.0 (5)C22—C21—C26—C250.9 (4)
N1—C7—C12—C11−178.1 (3)N2—C21—C26—C25−177.0 (3)
C10—C11—C12—C70.8 (6)C24—C25—C26—C21−1.3 (5)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1N···O3i0.862.413.164 (3)147
N2—H2N···O1ii0.862.223.056 (3)164
C11—H11···O2iii0.932.503.227 (4)135
C23—H23···O4iii0.932.503.316 (4)147

Symmetry codes: (i) −x+1, −y+1, z−1/2; (ii) x+1/2, −y+1, z; (iii) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KJ2115).

References

  • Enraf–Nonius (1996). CAD-4-PC Enraf–Nonius, Delft, The Netherlands.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Gelbrich, T., Hursthouse, M. B. & Threlfall, T. L. (2007). Acta Cryst. B63, 621–632. [PubMed]
  • Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2008a). Acta Cryst. E64, o1691. [PMC free article] [PubMed]
  • Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2008b). Acta Cryst. E64, o1692. [PMC free article] [PubMed]
  • Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2008c). Acta Cryst. E64, o2190. [PMC free article] [PubMed]
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  • Perlovich, G. L., Tkachev, V. V., Schaper, K.-J. & Raevsky, O. A. (2006). Acta Cryst. E62, o780–o782.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Stoe & Cie (1987). REDU4 Stoe & Cie GmbH, Darmstadt, Germany.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography