PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 March 1; 65(Pt 3): o534.
Published online 2009 February 18. doi:  10.1107/S1600536809004486
PMCID: PMC2968638

2-Benz­yloxy-1-naphthaldehyde

Abstract

In the title compound, C18H14O2, the dihedral angle between the phenyl and naphthyl ring systems is 21.8 (3)°. The packing of mol­ecules in the crystal structure is stabilized by weak inter­molecular C—H(...)O hydrogen bonds.

Related literature

For the preparation of 2-benz­yloxy-1-naphthaldehyde, see: Quideau et al. (2001 [triangle]). For synthetic use of the title compound, see: Knight & Little (2001 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o534-scheme1.jpg

Experimental

Crystal data

  • C18H14O2
  • M r = 262.29
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o534-efi1.jpg
  • a = 10.427 (7) Å
  • b = 8.128 (6) Å
  • c = 15.787 (11) Å
  • β = 94.746 (11)°
  • V = 1333.3 (16) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 296 K
  • 0.39 × 0.26 × 0.16 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.968, T max = 0.987
  • 5088 measured reflections
  • 2262 independent reflections
  • 1354 reflections with I > 2σ(I)
  • R int = 0.038

Refinement

  • R[F 2 > 2σ(F 2)] = 0.084
  • wR(F 2) = 0.285
  • S = 1.04
  • 2262 reflections
  • 181 parameters
  • H-atom parameters constrained
  • Δρmax = 0.41 e Å−3
  • Δρmin = −0.53 e Å−3

Data collection: SMART (Bruker, 2002 [triangle]); cell refinement: SAINT (Bruker, 2002 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: Mercury (Macrae et al., 2006 [triangle]) and CAMERON (Watkin et al., 1996 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809004486/wn2303sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809004486/wn2303Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the Natural Science Foundation of China (grant No. 20802092) for financial support.

supplementary crystallographic information

Comment

The title compound, 2-benzyloxy-1-naphthaldehyde, was obtained by benzylation of 2-hydroxy-1-naphthaldehyde with benzyl bromide (Quideau et al., 2001) and used for alkylation of position 4 in the naphthyl ring system. It has also been used for the intramolecular trapping of benzynes to yield some novel xanthenes (Knight & Little, 2001).

In the title compound, C18H14O2, the dihedral angle between the phenyl and naphthyl ring systems is 21.8 (3)°. The packing of molecules in the crystal structure is stabilized by weak intermolecular C—H···O hydrogen bonds.

Experimental

To a stirred solution of commercially available 2-hydroxy-1-naphthaldehyde (4.30 g, 25.0 mmol) in N,N-dimethylformamide (100.0 cm3) was added potassium carbonate (3.82 g, 27.6 mmol) and benzyl bromide (3.0 cm3, 25.0 mmol), and the mixture was heated for 4 h at 90–100°C. The solution was filtered through celite and the solvent removed in vacuo. The residue was dissolved with Et2O (160 cm3), washed with 1 M NaOH (110 cm3), brine (2× 110 cm3), and dried over Na2SO4. Evaporation of the solvent afforded the title compound as a light yellow powder (6.0 g, 91%). The melting point and the spectroscopic data of the title compound were consisted with the reported literature (Quideau et al., 2001).

Refinement

All H atoms were placed in calculated positions and refined as riding, with C—H = 0.93–0.97Å and with Uiso(H) = 1.2Ueq(C). The values of R[F2>2σ(F2)] and wR(F2) are 0.084 and 0.285, respectively; these high values may be due to the poor quality of the crystals.

Figures

Fig. 1.
The molecular structure of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius.
Fig. 2.
The packing of the title compound, viewed down the b axis. Dotted lines indicate hydrogen bonds.

Crystal data

C18H14O2F(000) = 552
Mr = 262.29Dx = 1.307 Mg m3
Monoclinic, P21/cMelting point: 393(1) K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 10.427 (7) ÅCell parameters from 1554 reflections
b = 8.128 (6) Åθ = 2.6–24.3°
c = 15.787 (11) ŵ = 0.08 mm1
β = 94.746 (11)°T = 296 K
V = 1333.3 (16) Å3Block, colourless
Z = 40.39 × 0.26 × 0.16 mm

Data collection

Bruker SMART APEX CCD area-detector diffractometer2262 independent reflections
Radiation source: fine-focus sealed tube1354 reflections with I > 2σ(I)
graphiteRint = 0.038
[var phi] and ω scansθmax = 25.1°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Bruker, 2005)h = −7→12
Tmin = 0.968, Tmax = 0.987k = −9→6
5088 measured reflectionsl = −18→17

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.084Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.285H-atom parameters constrained
S = 1.04w = 1/[σ2(Fo2) + (0.18P)2 + 0.612P] where P = (Fo2 + 2Fc2)/3
2262 reflections(Δ/σ)max < 0.001
181 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = −0.53 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.6120 (3)0.2057 (4)0.65206 (15)0.0658 (10)
O20.6321 (2)0.1063 (4)0.41483 (14)0.0531 (8)
C10.4002 (3)0.3376 (5)0.5290 (2)0.0411 (9)
C20.3808 (4)0.4033 (5)0.6101 (2)0.0518 (11)
H20.44230.38370.65510.062*
C30.2749 (4)0.4942 (6)0.6241 (3)0.0630 (12)
H30.26410.53350.67840.076*
C40.1821 (4)0.5289 (7)0.5572 (3)0.0716 (14)
H40.11030.59180.56710.086*
C50.1967 (4)0.4710 (5)0.4783 (3)0.0577 (11)
H50.13490.49520.43430.069*
C60.3053 (3)0.3737 (6)0.4616 (2)0.0504 (11)
C70.3228 (3)0.3153 (5)0.3794 (2)0.0523 (11)
H70.26080.33950.33540.063*
C80.4275 (3)0.2244 (6)0.3622 (2)0.0539 (11)
H80.43540.18510.30750.065*
C90.5238 (3)0.1904 (5)0.4280 (2)0.0431 (10)
C100.5100 (3)0.2424 (5)0.5110 (2)0.0392 (9)
C110.6122 (3)0.1927 (6)0.5756 (2)0.0514 (11)
H110.68530.14590.55560.062*
C120.6621 (3)0.0652 (6)0.3305 (2)0.0575 (12)
H12A0.63810.15480.29180.069*
H12B0.6154−0.03260.31080.069*
C130.8049 (3)0.0350 (5)0.3337 (2)0.0468 (10)
C140.8757 (4)0.1189 (6)0.2765 (2)0.0571 (12)
H140.83480.19020.23680.069*
C151.0079 (4)0.0954 (7)0.2792 (3)0.0713 (15)
H151.05490.14840.23970.086*
C161.0699 (4)−0.0047 (6)0.3390 (3)0.0635 (13)
H161.1589−0.01630.34120.076*
C171.0006 (4)−0.0884 (6)0.3960 (3)0.0630 (12)
H171.0423−0.15820.43600.076*
C180.8681 (4)−0.0675 (6)0.3932 (2)0.0579 (12)
H180.8214−0.12320.43190.069*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0596 (17)0.099 (3)0.0374 (14)0.0078 (16)−0.0065 (11)−0.0031 (14)
O20.0498 (15)0.075 (2)0.0352 (13)0.0178 (14)0.0062 (10)−0.0012 (12)
C10.0352 (18)0.047 (3)0.0415 (17)−0.0085 (16)0.0054 (14)0.0049 (17)
C20.045 (2)0.062 (3)0.050 (2)−0.003 (2)0.0112 (16)−0.0008 (19)
C30.058 (2)0.066 (3)0.068 (3)−0.003 (2)0.023 (2)−0.001 (2)
C40.046 (2)0.082 (4)0.090 (3)0.008 (2)0.024 (2)0.003 (3)
C50.043 (2)0.056 (3)0.075 (3)−0.0013 (19)0.0041 (18)0.008 (2)
C60.0307 (17)0.068 (3)0.052 (2)−0.0035 (17)0.0040 (15)0.011 (2)
C70.040 (2)0.067 (3)0.047 (2)−0.0013 (19)−0.0074 (15)0.010 (2)
C80.045 (2)0.082 (3)0.0340 (18)−0.002 (2)−0.0007 (15)0.0032 (18)
C90.0345 (17)0.055 (3)0.0393 (18)−0.0040 (17)0.0035 (13)0.0078 (17)
C100.0328 (17)0.047 (2)0.0373 (17)−0.0047 (15)0.0012 (13)0.0028 (16)
C110.0386 (19)0.076 (3)0.0386 (19)0.0002 (19)−0.0005 (14)0.0038 (19)
C120.043 (2)0.096 (4)0.0337 (17)−0.003 (2)0.0069 (14)−0.004 (2)
C130.0395 (18)0.066 (3)0.0355 (16)−0.0014 (18)0.0055 (14)−0.0021 (18)
C140.045 (2)0.081 (4)0.047 (2)0.005 (2)0.0070 (16)0.015 (2)
C150.044 (2)0.107 (4)0.064 (3)0.003 (2)0.0155 (19)0.017 (3)
C160.043 (2)0.087 (4)0.061 (2)0.010 (2)0.0049 (18)0.002 (2)
C170.056 (2)0.075 (3)0.057 (2)0.015 (2)−0.0031 (18)0.008 (2)
C180.054 (2)0.071 (3)0.050 (2)−0.002 (2)0.0091 (17)0.010 (2)

Geometric parameters (Å, °)

O1—C111.211 (4)C8—H80.9300
O2—C91.351 (4)C9—C101.395 (5)
O2—C121.433 (4)C10—C111.471 (5)
C1—C21.417 (5)C11—H110.9300
C1—C61.422 (5)C12—C131.506 (5)
C1—C101.430 (5)C12—H12A0.9700
C2—C31.362 (6)C12—H12B0.9700
C2—H20.9300C13—C181.382 (6)
C3—C41.400 (6)C13—C141.391 (5)
C3—H30.9300C14—C151.389 (5)
C4—C51.351 (6)C14—H140.9300
C4—H40.9300C15—C161.367 (6)
C5—C61.424 (5)C15—H150.9300
C5—H50.9300C16—C171.380 (6)
C6—C71.407 (5)C16—H160.9300
C7—C81.365 (5)C17—C181.389 (5)
C7—H70.9300C17—H170.9300
C8—C91.412 (5)C18—H180.9300
C9—O2—C12120.7 (3)C9—C10—C11116.3 (3)
C2—C1—C6117.1 (3)C1—C10—C11123.8 (3)
C2—C1—C10124.1 (3)O1—C11—C10127.3 (4)
C6—C1—C10118.8 (3)O1—C11—H11116.3
C3—C2—C1121.9 (4)C10—C11—H11116.3
C3—C2—H2119.0O2—C12—C13107.3 (3)
C1—C2—H2119.0O2—C12—H12A110.2
C2—C3—C4120.4 (4)C13—C12—H12A110.2
C2—C3—H3119.8O2—C12—H12B110.2
C4—C3—H3119.8C13—C12—H12B110.2
C5—C4—C3120.1 (4)H12A—C12—H12B108.5
C5—C4—H4120.0C18—C13—C14119.2 (3)
C3—C4—H4120.0C18—C13—C12122.4 (3)
C4—C5—C6121.1 (4)C14—C13—C12118.3 (3)
C4—C5—H5119.5C15—C14—C13119.4 (4)
C6—C5—H5119.5C15—C14—H14120.3
C7—C6—C1119.0 (3)C13—C14—H14120.3
C7—C6—C5121.6 (3)C16—C15—C14121.0 (4)
C1—C6—C5119.4 (4)C16—C15—H15119.5
C8—C7—C6122.2 (3)C14—C15—H15119.5
C8—C7—H7118.9C15—C16—C17120.0 (4)
C6—C7—H7118.9C15—C16—H16120.0
C7—C8—C9119.4 (3)C17—C16—H16120.0
C7—C8—H8120.3C16—C17—C18119.5 (4)
C9—C8—H8120.3C16—C17—H17120.2
O2—C9—C10116.8 (3)C18—C17—H17120.2
O2—C9—C8122.5 (3)C13—C18—C17120.8 (4)
C10—C9—C8120.6 (3)C13—C18—H18119.6
C9—C10—C1119.9 (3)C17—C18—H18119.6
C6—C1—C2—C31.4 (6)O2—C9—C10—C11−2.9 (5)
C10—C1—C2—C3179.6 (4)C8—C9—C10—C11176.6 (4)
C1—C2—C3—C4−1.4 (7)C2—C1—C10—C9−176.6 (4)
C2—C3—C4—C50.5 (7)C6—C1—C10—C91.5 (5)
C3—C4—C5—C60.4 (7)C2—C1—C10—C114.0 (6)
C2—C1—C6—C7178.0 (4)C6—C1—C10—C11−177.9 (3)
C10—C1—C6—C7−0.2 (6)C9—C10—C11—O1−169.9 (4)
C2—C1—C6—C5−0.5 (5)C1—C10—C11—O19.6 (7)
C10—C1—C6—C5−178.8 (3)C9—O2—C12—C13158.2 (3)
C4—C5—C6—C7−178.8 (4)O2—C12—C13—C1849.5 (6)
C4—C5—C6—C1−0.3 (6)O2—C12—C13—C14−127.9 (4)
C1—C6—C7—C80.3 (6)C18—C13—C14—C151.4 (6)
C5—C6—C7—C8178.8 (4)C12—C13—C14—C15178.8 (4)
C6—C7—C8—C9−1.6 (6)C13—C14—C15—C16−2.2 (7)
C12—O2—C9—C10−172.4 (3)C14—C15—C16—C172.2 (8)
C12—O2—C9—C88.1 (6)C15—C16—C17—C18−1.3 (7)
C7—C8—C9—O2−177.6 (4)C14—C13—C18—C17−0.6 (7)
C7—C8—C9—C102.9 (6)C12—C13—C18—C17−177.9 (4)
O2—C9—C10—C1177.6 (3)C16—C17—C18—C130.5 (7)
C8—C9—C10—C1−2.8 (6)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C12—H12A···O1i0.972.483.381 (4)155
C14—H14···O1i0.932.723.544 (5)148

Symmetry codes: (i) x, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WN2303).

References

  • Bruker (2005). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2002). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Knight, D. W. & Little, P. B. (2001). J. Chem. Soc. Perkin Trans. 1, pp. 1771–1777.
  • Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  • Quideau, S., Pouységu, L., Oxoby, M. & Looney, M. A. (2001). Tetrahedron, 57, 319–329.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON Chemical Crystallography Laboratory, Oxford, England.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography