PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 March 1; 65(Pt 3): m261.
Published online 2009 February 11. doi:  10.1107/S1600536809003559
PMCID: PMC2968633

Bis(μ-5-chloro­quinolin-8-olato)-κ3 N,O:O3 O:N,O-bis­[(acetato-κ2 O,O′)lead(II)]

Abstract

The mol­ecule of the title compound, [Pb2(C9H5ClNO)2(C2H3O2)2], lies about a center of inversion. The PbII atom is chelated by acetate and substituted quinolin-8-olate anions; the O atoms of the quinolin-8-olates also bridge to confer a five-coordinate status to each metal center. The geometry approximates a distorted Ψ-fac octa­hedron in which one of the sites is occupied by a stereochemically active lone pair.

Related literature

The structural chemistry of lead(II) 8-hydroxy­quinolinates has been reviewed, including bis­(μ-acetato)diacetatotetra­kis(μ-quinolin-8-olato)tetra­lead dihydrate (Shahverdizadeh et al., 2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m261-scheme1.jpg

Experimental

Crystal data

  • [Pb2(C9H5ClNO)2(C2H3O2)2]
  • M r = 889.65
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m261-efi1.jpg
  • a = 5.3049 (1) Å
  • b = 11.8200 (3) Å
  • c = 17.4928 (3) Å
  • β = 94.569 (1)°
  • V = 1093.38 (4) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 15.67 mm−1
  • T = 100 (2) K
  • 0.10 × 0.03 × 0.02 mm

Data collection

  • Bruker SMART APEX diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.303, T max = 0.745
  • 7713 measured reflections
  • 1925 independent reflections
  • 1655 reflections with I > 2σ(I)
  • R int = 0.063

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040
  • wR(F 2) = 0.107
  • S = 1.00
  • 1925 reflections
  • 155 parameters
  • 72 restraints
  • H-atom parameters constrained
  • Δρmax = 5.25 e Å−3
  • Δρmin = −3.38 e Å−3

Data collection: APEX2 (Bruker, 2008 [triangle]); cell refinement: SAINT (Bruker, 2008 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: X-SEED (Barbour, 2001 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2009 [triangle]).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809003559/tk2365sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809003559/tk2365Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank Shahid Beheshti University and the University of Malaya for supporting this study.

supplementary crystallographic information

Experimental

Lead acetate (0.38 g, 1 mmol) and 5-chloro-8-hydroxyquinoline (0.32 g, 2 mmol) were loaded into a convection tube; the tube was filled with dry methanol and kept at 333 K. Crystals were collected from the side arm after 1 day.

Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H 0.93–0.98 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2–1.5U(C).

The crystal diffracted strongly owing to the presence of the heavy metal atom. However, this introduced severe absorption problems that could not be corrected analytically as the crystal did not have regular faces. Although a sphere of reflections was measured, multi-scan treatment only marginally improved the quality. The final difference Fourier map had large peaks/deep holes near the lead atom. The anisotropic displacement factors of the carbon atoms were restrained to be nearly isotropic.

Figures

Fig. 1.
Thermal ellipsoid plot (Barbour, 2001) of Pb2(CH3CO2)2(C9H5ClNO)2; ellipsoids are drawn at the 70% probability level and H atoms of arbitrary radius. Unlabelled atoms are related by 1-x, 1-y, 1-z.

Crystal data

[Pb2(C9H5ClNO)2(C2H3O2)2]F(000) = 816
Mr = 889.65Dx = 2.702 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4123 reflections
a = 5.3049 (1) Åθ = 2.9–28.3°
b = 11.8200 (3) ŵ = 15.67 mm1
c = 17.4928 (3) ÅT = 100 K
β = 94.569 (1)°Yellow, prism
V = 1093.38 (4) Å30.10 × 0.03 × 0.02 mm
Z = 2

Data collection

Bruker SMART APEX diffractometer1925 independent reflections
Radiation source: fine-focus sealed tube1655 reflections with I > 2σ(I)
graphiteRint = 0.063
ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −6→6
Tmin = 0.303, Tmax = 0.745k = −13→14
7713 measured reflectionsl = −20→20

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H-atom parameters constrained
S = 1.00w = 1/[σ2(Fo2) + (0.0761P)2] where P = (Fo2 + 2Fc2)/3
1925 reflections(Δ/σ)max = 0.001
155 parametersΔρmax = 5.25 e Å3
72 restraintsΔρmin = −3.38 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Pb10.63668 (6)0.60161 (3)0.421032 (17)0.01511 (18)
Cl1−0.4232 (4)0.30986 (19)0.20373 (12)0.0219 (5)
O10.3463 (11)0.4603 (5)0.4439 (3)0.0175 (13)
O20.2902 (11)0.7164 (6)0.4314 (4)0.0244 (14)
O30.6097 (12)0.8054 (6)0.4933 (4)0.0318 (16)
N10.3482 (13)0.5526 (6)0.3014 (4)0.0164 (15)
C10.1685 (16)0.4300 (8)0.3908 (5)0.0149 (17)
C2−0.0268 (17)0.3547 (8)0.4053 (5)0.0186 (18)
H2−0.03510.32590.45570.022*
C3−0.2105 (16)0.3205 (7)0.3474 (5)0.0186 (19)
H3−0.33920.26910.35940.022*
C4−0.2057 (16)0.3610 (8)0.2735 (5)0.0154 (17)
C5−0.0195 (16)0.4416 (7)0.2573 (5)0.0143 (18)
C60.1645 (16)0.4747 (7)0.3134 (5)0.0179 (18)
C7−0.0074 (17)0.4913 (8)0.1825 (5)0.0203 (19)
H7−0.12700.47070.14160.024*
C80.1763 (17)0.5679 (8)0.1710 (5)0.0193 (19)
H80.18630.60180.12210.023*
C90.3506 (19)0.5960 (7)0.2321 (6)0.021 (2)
H90.47840.64970.22320.025*
C100.3841 (15)0.7984 (8)0.4697 (5)0.0172 (18)
C110.202 (2)0.8912 (7)0.4903 (6)0.025 (2)
H11A0.12280.86980.53690.037*
H11B0.07130.90130.44810.037*
H11C0.29530.96220.49920.037*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Pb10.0176 (2)0.0145 (2)0.0126 (2)−0.00021 (12)−0.00237 (15)0.00053 (12)
Cl10.0203 (10)0.0240 (11)0.0198 (11)−0.0012 (9)−0.0085 (9)−0.0023 (9)
O10.021 (3)0.014 (3)0.017 (3)−0.005 (2)−0.005 (3)0.001 (3)
O20.022 (3)0.027 (4)0.023 (3)0.006 (3)−0.007 (3)−0.005 (3)
O30.026 (4)0.027 (4)0.041 (4)0.000 (3)−0.004 (3)−0.012 (3)
N10.022 (4)0.012 (4)0.015 (4)−0.003 (3)−0.002 (3)0.000 (3)
C10.017 (3)0.017 (3)0.010 (3)0.002 (3)−0.005 (3)−0.002 (3)
C20.021 (4)0.021 (4)0.013 (4)−0.001 (4)−0.003 (4)0.003 (4)
C30.019 (4)0.016 (4)0.020 (4)−0.001 (3)−0.004 (3)0.004 (3)
C40.016 (3)0.015 (3)0.013 (3)−0.001 (3)−0.008 (3)−0.006 (3)
C50.020 (4)0.013 (4)0.009 (4)0.003 (3)−0.002 (3)−0.001 (3)
C60.018 (4)0.014 (4)0.021 (4)0.003 (3)0.000 (3)−0.001 (3)
C70.026 (4)0.021 (4)0.013 (4)0.007 (4)−0.006 (3)0.001 (4)
C80.024 (4)0.021 (4)0.012 (4)0.001 (4)0.000 (4)0.002 (4)
C90.025 (5)0.017 (4)0.022 (5)0.000 (3)0.008 (4)0.006 (4)
C100.018 (4)0.023 (4)0.010 (4)−0.005 (4)−0.005 (3)0.010 (4)
C110.031 (5)0.020 (5)0.022 (5)0.003 (4)−0.003 (4)−0.004 (4)

Geometric parameters (Å, °)

Pb1—O22.303 (6)C2—H20.9500
Pb1—O12.328 (6)C3—C41.380 (13)
Pb1—O1i2.469 (6)C3—H30.9500
Pb1—N12.559 (7)C4—C51.417 (13)
Pb1—O32.729 (7)C5—C61.384 (13)
Pb1—C102.848 (9)C5—C71.441 (12)
Cl1—C41.722 (9)C7—C81.356 (13)
O1—C11.319 (11)C7—H70.9500
O1—Pb1i2.469 (6)C8—C91.397 (15)
O2—C101.257 (11)C8—H80.9500
O3—C101.237 (10)C9—H90.9500
N1—C91.317 (12)C10—C111.524 (13)
N1—C61.370 (11)C11—H11A0.9800
C1—C21.404 (13)C11—H11B0.9800
C1—C61.451 (13)C11—H11C0.9800
C2—C31.407 (13)
O2—Pb1—O182.3 (2)C2—C3—H3119.6
O2—Pb1—O1i93.9 (2)C3—C4—C5119.1 (8)
O1—Pb1—O1i66.3 (2)C3—C4—Cl1118.8 (7)
O2—Pb1—N176.6 (2)C5—C4—Cl1122.2 (7)
O1—Pb1—N167.5 (2)C6—C5—C4120.7 (8)
O1i—Pb1—N1133.6 (2)C6—C5—C7116.7 (8)
O2—Pb1—O351.1 (2)C4—C5—C7122.6 (8)
O1—Pb1—O3119.6 (2)N1—C6—C5123.4 (8)
O1i—Pb1—O379.5 (2)N1—C6—C1115.5 (8)
N1—Pb1—O3121.9 (2)C5—C6—C1121.0 (8)
O2—Pb1—C1025.6 (2)C8—C7—C5119.4 (9)
O1—Pb1—C10101.6 (2)C8—C7—H7120.3
O1i—Pb1—C1086.5 (2)C5—C7—H7120.3
N1—Pb1—C1099.5 (2)C7—C8—C9119.0 (8)
O3—Pb1—C1025.5 (2)C7—C8—H8120.5
C1—O1—Pb1121.3 (5)C9—C8—H8120.5
C1—O1—Pb1i124.2 (5)N1—C9—C8123.9 (8)
Pb1—O1—Pb1i113.7 (2)N1—C9—H9118.1
C10—O2—Pb1102.2 (5)C8—C9—H9118.1
C10—O3—Pb182.6 (5)O3—C10—O2124.1 (9)
C9—N1—C6117.6 (8)O3—C10—C11119.2 (8)
C9—N1—Pb1128.0 (6)O2—C10—C11116.7 (8)
C6—N1—Pb1114.4 (6)O3—C10—Pb171.9 (5)
O1—C1—C2122.8 (8)O2—C10—Pb152.2 (4)
O1—C1—C6120.9 (8)C11—C10—Pb1168.8 (6)
C2—C1—C6116.3 (8)C10—C11—H11A109.5
C1—C2—C3122.1 (8)C10—C11—H11B109.5
C1—C2—H2119.0H11A—C11—H11B109.5
C3—C2—H2119.0C10—C11—H11C109.5
C4—C3—C2120.7 (8)H11A—C11—H11C109.5
C4—C3—H3119.6H11B—C11—H11C109.5
O2—Pb1—O1—C173.2 (6)Cl1—C4—C5—C6−175.1 (6)
O1i—Pb1—O1—C1170.9 (8)C3—C4—C5—C7−177.6 (8)
N1—Pb1—O1—C1−5.5 (6)Cl1—C4—C5—C73.6 (12)
O3—Pb1—O1—C1109.5 (6)C9—N1—C6—C5−1.4 (12)
C10—Pb1—O1—C190.1 (6)Pb1—N1—C6—C5176.2 (6)
O2—Pb1—O1—Pb1i−97.7 (3)C9—N1—C6—C1−179.6 (8)
O1i—Pb1—O1—Pb1i0.0Pb1—N1—C6—C1−2.0 (9)
N1—Pb1—O1—Pb1i−176.4 (3)C4—C5—C6—N1−179.6 (8)
O3—Pb1—O1—Pb1i−61.4 (3)C7—C5—C6—N11.7 (12)
C10—Pb1—O1—Pb1i−80.8 (3)C4—C5—C6—C1−1.5 (12)
O1—Pb1—O2—C10138.8 (5)C7—C5—C6—C1179.8 (8)
O1i—Pb1—O2—C1073.4 (5)O1—C1—C6—N1−2.8 (12)
N1—Pb1—O2—C10−152.6 (6)C2—C1—C6—N1176.6 (8)
O3—Pb1—O2—C100.3 (5)O1—C1—C6—C5179.0 (8)
O2—Pb1—O3—C10−0.3 (5)C2—C1—C6—C5−1.6 (12)
O1—Pb1—O3—C10−49.2 (6)C6—C5—C7—C8−1.2 (12)
O1i—Pb1—O3—C10−104.0 (5)C4—C5—C7—C8−179.9 (8)
N1—Pb1—O3—C1031.3 (6)C5—C7—C8—C90.4 (13)
O2—Pb1—N1—C993.9 (7)C6—N1—C9—C80.6 (13)
O1—Pb1—N1—C9−179.0 (8)Pb1—N1—C9—C8−176.6 (6)
O1i—Pb1—N1—C9176.4 (6)C7—C8—C9—N1−0.1 (14)
O3—Pb1—N1—C969.1 (8)Pb1—O3—C10—O20.4 (8)
C10—Pb1—N1—C982.3 (7)Pb1—O3—C10—C11177.7 (7)
O2—Pb1—N1—C6−83.4 (6)Pb1—O2—C10—O3−0.5 (10)
O1—Pb1—N1—C63.7 (5)Pb1—O2—C10—C11−177.9 (6)
O1i—Pb1—N1—C6−0.9 (7)O2—Pb1—C10—O3179.5 (8)
O3—Pb1—N1—C6−108.1 (6)O1—Pb1—C10—O3137.8 (5)
C10—Pb1—N1—C6−95.0 (6)O1i—Pb1—C10—O372.9 (5)
Pb1—O1—C1—C2−172.5 (7)N1—Pb1—C10—O3−153.5 (5)
Pb1i—O1—C1—C2−2.6 (11)O1—Pb1—C10—O2−41.8 (6)
Pb1—O1—C1—C66.8 (10)O1i—Pb1—C10—O2−106.7 (5)
Pb1i—O1—C1—C6176.8 (6)N1—Pb1—C10—O227.0 (6)
O1—C1—C2—C3−178.1 (8)O3—Pb1—C10—O2−179.5 (8)
C6—C1—C2—C32.6 (13)O2—Pb1—C10—C1110 (3)
C1—C2—C3—C4−0.4 (14)O1—Pb1—C10—C11−32 (3)
C2—C3—C4—C5−2.8 (13)O1i—Pb1—C10—C11−97 (3)
C2—C3—C4—Cl1176.0 (7)N1—Pb1—C10—C1137 (3)
C3—C4—C5—C63.7 (13)O3—Pb1—C10—C11−170 (3)

Symmetry codes: (i) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2365).

References

  • Barbour, L. J. (2001). J. Supramol. Chem.1, 189–191.
  • Bruker (2008). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Shahverdizadeh, G. H., Soudi, A. A., Morsali, A. & Retailleau, P. (2008). Inorg. Chim. Acta, 361, 1875–1884.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Westrip, S. P. (2009). publCIF In preparation.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography