PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 March 1; 65(Pt 3): o444.
Published online 2009 February 4. doi:  10.1107/S1600536809001706
PMCID: PMC2968629

2-Chloro-N-(3,5-dimethyl­phen­yl)benzamide

Abstract

In the structure of the the title compound, C15H14ClNO, the N—H and C=O bonds are trans to each other and the amide O atom is anti to the ortho-Cl atom in the benzoyl ring. The amide group makes dihedral angles of 61.2 (6) and 42.2 (8)° with the benzoyl and aniline rings, respectively. In the crystal, the mol­ecules are linked into infinite chains by N—H(...)O hydrogen bonds.

Related literature

For the synthesis, see: Gowda et al. (2003 [triangle]). For structure of the 3,5-dichloro­phenyl analog and other benzanilides, see: Gowda et al. (2008a [triangle],b [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o444-scheme1.jpg

Experimental

Crystal data

  • C15H14ClNO
  • M r = 259.72
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o444-efi1.jpg
  • a = 9.1867 (6) Å
  • b = 13.9710 (8) Å
  • c = 10.2711 (7) Å
  • V = 1318.27 (15) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.28 mm−1
  • T = 100 (2) K
  • 0.48 × 0.28 × 0.13 mm

Data collection

  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector
  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007 [triangle]) T min = 0.879, T max = 0.965
  • 6034 measured reflections
  • 2136 independent reflections
  • 1977 reflections with I > 2σ(I)
  • R int = 0.014

Refinement

  • R[F 2 > 2σ(F 2)] = 0.031
  • wR(F 2) = 0.083
  • S = 1.03
  • 2136 reflections
  • 187 parameters
  • 2 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.34 e Å−3
  • Δρmin = −0.27 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 712 Friedel pairs
  • Flack parameter: 0.01 (7)

Data collection: CrysAlis CCD (Oxford Diffraction, 2007 [triangle]); cell refinement: CrysAlis RED (Oxford Diffraction, 2007 [triangle]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2003 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809001706/ng2536sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809001706/ng2536Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for extensions of his research fellowship.

supplementary crystallographic information

Comment

In the present work, the structure of 2-chloro-N-(3,5-dimethylphenyl)- benzamide (N35DMP2CBA) has been determined to explore the substituent effects on the solid state structures of benzanilides (Gowda et al., 2003, 2008a,b). The conformations of N—H and C=O bonds in the amide group of N35DMP2CBA are trans to each other (Fig.1), similar to that observed in 2-chloro-N-(3,5-dichlorophenyl)-benzamide(N35DCP2CBA) (Gowda et al., 2008a), 2-chloro-N-(phenyl)-benzamide (NP2CBA) (Gowda et al., 2003) and other benzanilides (Gowda et al., 2008b). Further, the conformation of the amide oxygen in N35DMP2CBA is anti to the ortho-chloro group in the benzoyl ring similar to that observed in N35DCP2CBA but in contrast to the syn conformation observed in NP2CBA. The amide group –NHCO– makes the dihedral angles of 61.2 (6)° and 42.2 (8)° with the benzoyl and aniline rings, respectively, while the benzoyl and aniline rings form the dihedral angle of 76.7 (1)°), compared to the corresponding values of 63.1 (12)°, 31.1 (17)° and 32.1 (2)°) in N35DCP2CBA. Part of the crystal structure of the title compound with infinite molecular chains running along the a axis is shown in Fig. 2. The chains are generated by N—H···O hydrogen bonds (Table 1)

Experimental

The title compound was prepared according to the literature method (Gowda et al., 2003). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra. Single crystals of the title compound were obtained from an ethanolic solution and used for X-ray diffraction studies at room temperature.

Refinement

The H atoms of the methyl groups were positioned with idealized geometry using a riding model with C—H = 0.98 Å. The other H atoms were located in difference map, and its positional parameters were refined freely with C—H = 0.89 (3)–0.99 (3) Å, while the H atom of the NH group was later restrained to the distance 0.86 (2) Å. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

Figures

Fig. 1.
Molecular structure of the title compound, showing the atom labeling scheme. The displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.
Fig. 2.
Molecular packing of the title compound with hydrogen bonding shown as dashed lines.

Crystal data

C15H14ClNOF(000) = 544
Mr = 259.72Dx = 1.309 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 2104 reflections
a = 9.1867 (6) Åθ = 2.5–28.1°
b = 13.9710 (8) ŵ = 0.28 mm1
c = 10.2711 (7) ÅT = 100 K
V = 1318.27 (15) Å3Prism, colourless
Z = 40.48 × 0.28 × 0.13 mm

Data collection

Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector2136 independent reflections
Radiation source: fine-focus sealed tube1977 reflections with I > 2σ(I)
graphiteRint = 0.014
Rotation method data acquisition using ω and [var phi] scansθmax = 26.4°, θmin = 2.5°
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007)h = −11→11
Tmin = 0.879, Tmax = 0.965k = −17→17
6034 measured reflectionsl = −10→12

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.083w = 1/[σ2(Fo2) + (0.0477P)2 + 0.598P] where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.002
2136 reflectionsΔρmax = 0.34 e Å3
187 parametersΔρmin = −0.27 e Å3
2 restraintsAbsolute structure: Flack (1983), 712 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.01 (7)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.11485 (6)0.32674 (4)1.16333 (7)0.03305 (16)
O10.19372 (16)0.32548 (10)0.85807 (18)0.0253 (4)
N1−0.01100 (18)0.24094 (12)0.8052 (2)0.0210 (4)
H1N−0.0995 (19)0.2359 (18)0.820 (3)0.025*
C10.0540 (2)0.17351 (13)0.7178 (2)0.0211 (4)
C20.0112 (2)0.07840 (15)0.7257 (3)0.0247 (5)
H2−0.049 (3)0.0577 (18)0.794 (3)0.030*
C30.0694 (2)0.01080 (14)0.6398 (3)0.0299 (6)
C40.1719 (3)0.04035 (16)0.5498 (3)0.0307 (5)
H40.219 (3)−0.0046 (18)0.489 (3)0.037*
C50.2166 (3)0.13617 (16)0.5410 (2)0.0287 (5)
C60.1549 (2)0.20260 (15)0.6256 (2)0.0249 (5)
H60.192 (3)0.2682 (18)0.617 (3)0.030*
C70.0614 (2)0.31152 (14)0.8664 (2)0.0200 (4)
C8−0.0321 (2)0.37827 (13)0.9446 (2)0.0193 (4)
C9−0.0080 (2)0.39557 (15)1.0757 (2)0.0237 (5)
C10−0.0849 (3)0.46637 (16)1.1420 (2)0.0289 (5)
H10−0.068 (3)0.4734 (19)1.232 (3)0.035*
C11−0.1868 (2)0.52064 (16)1.0761 (3)0.0313 (6)
H11−0.240 (3)0.5734 (18)1.117 (3)0.038*
C12−0.2157 (3)0.50321 (15)0.9463 (3)0.0305 (5)
H12−0.285 (3)0.539 (2)0.907 (3)0.037*
C13−0.1396 (2)0.43181 (16)0.8809 (3)0.0239 (5)
H13−0.157 (3)0.4197 (18)0.798 (3)0.029*
C140.0200 (3)−0.09234 (15)0.6467 (4)0.0409 (7)
H14A0.0078−0.11110.73800.049*
H14B0.0932−0.13350.60570.049*
H14C−0.0729−0.09930.60080.049*
C150.3281 (3)0.16747 (18)0.4422 (3)0.0392 (6)
H15A0.28540.16450.35480.047*
H15B0.41280.12500.44650.047*
H15C0.35850.23330.46100.047*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0362 (3)0.0325 (3)0.0304 (3)−0.0048 (2)−0.0079 (3)0.0058 (3)
O10.0141 (7)0.0272 (7)0.0345 (10)−0.0016 (5)0.0019 (7)−0.0081 (7)
N10.0133 (8)0.0218 (8)0.0280 (10)−0.0020 (6)0.0015 (8)−0.0034 (7)
C10.0164 (9)0.0219 (10)0.0249 (11)0.0019 (7)−0.0043 (9)−0.0049 (8)
C20.0178 (9)0.0242 (10)0.0323 (13)−0.0008 (8)−0.0045 (10)−0.0028 (9)
C30.0219 (10)0.0225 (9)0.0454 (16)0.0042 (7)−0.0137 (11)−0.0063 (10)
C40.0269 (11)0.0306 (11)0.0345 (14)0.0099 (9)−0.0078 (11)−0.0150 (10)
C50.0261 (11)0.0337 (11)0.0262 (14)0.0060 (9)−0.0032 (11)−0.0064 (10)
C60.0238 (10)0.0221 (10)0.0286 (13)0.0010 (8)−0.0015 (9)−0.0030 (8)
C70.0180 (10)0.0211 (9)0.0208 (12)−0.0005 (7)0.0029 (9)−0.0011 (8)
C80.0172 (9)0.0188 (9)0.0220 (12)−0.0048 (7)0.0034 (9)−0.0019 (8)
C90.0211 (9)0.0228 (10)0.0273 (13)−0.0085 (8)0.0010 (9)0.0008 (8)
C100.0351 (12)0.0282 (10)0.0235 (14)−0.0127 (8)0.0098 (11)−0.0094 (9)
C110.0271 (11)0.0249 (10)0.0418 (16)−0.0037 (8)0.0135 (11)−0.0097 (10)
C120.0221 (11)0.0270 (11)0.0424 (16)0.0016 (9)0.0052 (12)−0.0005 (10)
C130.0188 (10)0.0279 (10)0.0250 (13)−0.0015 (8)0.0016 (9)−0.0032 (9)
C140.0319 (12)0.0227 (10)0.068 (2)0.0007 (8)−0.0118 (14)−0.0102 (13)
C150.0412 (14)0.0471 (14)0.0294 (14)0.0052 (12)0.0090 (13)−0.0100 (12)

Geometric parameters (Å, °)

Cl1—C91.735 (2)C8—C91.386 (3)
O1—C71.234 (3)C8—C131.401 (3)
N1—C71.346 (3)C9—C101.393 (3)
N1—C11.431 (3)C10—C111.383 (4)
N1—H1N0.831 (17)C10—H100.94 (3)
C1—C61.386 (3)C11—C121.380 (4)
C1—C21.388 (3)C11—H110.98 (3)
C2—C31.399 (3)C12—C131.391 (3)
C2—H20.94 (3)C12—H120.91 (3)
C3—C41.382 (4)C13—H130.89 (3)
C3—C141.512 (3)C14—H14A0.9800
C4—C51.403 (3)C14—H14B0.9800
C4—H40.99 (3)C14—H14C0.9800
C5—C61.392 (3)C15—H15A0.9800
C5—C151.506 (4)C15—H15B0.9800
C6—H60.98 (3)C15—H15C0.9800
C7—C81.501 (3)
C7—N1—C1124.70 (17)C8—C9—C10121.2 (2)
C7—N1—H1N117.2 (19)C8—C9—Cl1120.74 (16)
C1—N1—H1N118.1 (19)C10—C9—Cl1118.02 (19)
C6—C1—C2120.7 (2)C11—C10—C9119.5 (2)
C6—C1—N1120.94 (18)C11—C10—H10122.3 (18)
C2—C1—N1118.4 (2)C9—C10—H10118.1 (18)
C1—C2—C3120.1 (2)C12—C11—C10120.4 (2)
C1—C2—H2120.5 (16)C12—C11—H11116.7 (18)
C3—C2—H2119.2 (16)C10—C11—H11122.8 (18)
C4—C3—C2118.7 (2)C11—C12—C13119.8 (2)
C4—C3—C14121.3 (2)C11—C12—H12118 (2)
C2—C3—C14119.9 (2)C13—C12—H12122 (2)
C3—C4—C5121.8 (2)C12—C13—C8120.7 (2)
C3—C4—H4122.2 (16)C12—C13—H13120.8 (17)
C5—C4—H4116.0 (16)C8—C13—H13118.5 (17)
C6—C5—C4118.4 (2)C3—C14—H14A109.5
C6—C5—C15120.3 (2)C3—C14—H14B109.5
C4—C5—C15121.3 (2)H14A—C14—H14B109.5
C1—C6—C5120.2 (2)C3—C14—H14C109.5
C1—C6—H6124.8 (16)H14A—C14—H14C109.5
C5—C6—H6114.9 (16)H14B—C14—H14C109.5
O1—C7—N1124.76 (19)C5—C15—H15A109.5
O1—C7—C8120.18 (18)C5—C15—H15B109.5
N1—C7—C8115.01 (18)H15A—C15—H15B109.5
C9—C8—C13118.23 (19)C5—C15—H15C109.5
C9—C8—C7122.49 (19)H15A—C15—H15C109.5
C13—C8—C7119.0 (2)H15B—C15—H15C109.5
C7—N1—C1—C6−42.6 (3)O1—C7—C8—C9−57.9 (3)
C7—N1—C1—C2138.7 (2)N1—C7—C8—C9124.6 (2)
C6—C1—C2—C3−0.3 (3)O1—C7—C8—C13116.2 (2)
N1—C1—C2—C3178.36 (19)N1—C7—C8—C13−61.3 (3)
C1—C2—C3—C41.4 (3)C13—C8—C9—C10−2.1 (3)
C1—C2—C3—C14−178.6 (2)C7—C8—C9—C10172.08 (18)
C2—C3—C4—C5−1.2 (4)C13—C8—C9—Cl1175.77 (15)
C14—C3—C4—C5178.8 (2)C7—C8—C9—Cl1−10.1 (3)
C3—C4—C5—C6−0.2 (4)C8—C9—C10—C11−0.2 (3)
C3—C4—C5—C15−179.8 (2)Cl1—C9—C10—C11−178.07 (16)
C2—C1—C6—C5−1.1 (3)C9—C10—C11—C121.9 (3)
N1—C1—C6—C5−179.7 (2)C10—C11—C12—C13−1.3 (3)
C4—C5—C6—C11.3 (3)C11—C12—C13—C8−1.1 (3)
C15—C5—C6—C1−179.0 (2)C9—C8—C13—C122.7 (3)
C1—N1—C7—O1−2.2 (4)C7—C8—C13—C12−171.68 (19)
C1—N1—C7—C8175.16 (19)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.83 (2)2.12 (2)2.918 (2)161 (2)

Symmetry codes: (i) x−1/2, −y+1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2536).

References

  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Gowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2008a). Acta Cryst. E64, o1294. [PMC free article] [PubMed]
  • Gowda, B. T., Jyothi, K., Paulus, H. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 225–230.
  • Gowda, B. T., Tokarčík, M., Kožíšek, J., Sowmya, B. P. & Fuess, H. (2008b). Acta Cryst. E64, o1365. [PMC free article] [PubMed]
  • Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Abingdon, England.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography