PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 March 1; 65(Pt 3): m354.
Published online 2009 February 28. doi:  10.1107/S1600536809005571
PMCID: PMC2968618

catena-Poly[[[bis­(4-methyl­benzoato-κ2 O,O′)zinc(II)]-μ-4,4′-bipyridine-κ2 N:N′] tetra­hydrate]

Abstract

The asymmetric unit of the title compound, {[Zn(C7H7O2)2(C10H8N2)]·4H2O}n, contains a highly distorted octa­hedral ZnII metal center strongly coordinated by two N atoms of two 4,4′-bipyridine (4,4′-bipy) ligands and chelated by two 4-methyl­benzoate anions. The crystallographic inversion center and glide plane present at the center of the C—C single bond of 4,4′-bipy, along with the cis coordination motif of the 4,4′-bipy, lead to one-dimensional zigzag chains. There are a large number of water mol­ecules in the crystal structure, which also form one-dimensional chains through O—H(...)O hydrogen bonds.

Related literature

For inorganic–organic hybrid frameworks containing d-block transition metal ions and pyridyl ligands, see: Batten & Robson (1998 [triangle]); Horikoshi & Mochida (2006 [triangle]); Fujita et al. (1994 [triangle]); Luan et al. (2005 [triangle]); Tao et al. (2002 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m354-scheme1.jpg

Experimental

Crystal data

  • [Zn(C7H7O2)2(C10H8N2)]·4H2O
  • M r = 563.89
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m354-efi1.jpg
  • a = 12.024 (5) Å
  • b = 18.803 (8) Å
  • c = 12.283 (5) Å
  • β = 98.063 (6)°
  • V = 2750 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.94 mm−1
  • T = 298 K
  • 0.25 × 0.23 × 0.22 mm

Data collection

  • Bruker SMART APEX area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003 [triangle]) T min = 0.799, T max = 0.820
  • 9512 measured reflections
  • 2439 independent reflections
  • 2306 reflections with I > 2σ(I)
  • R int = 0.065

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042
  • wR(F 2) = 0.119
  • S = 0.90
  • 2439 reflections
  • 169 parameters
  • H-atom parameters constrained
  • Δρmax = 0.41 e Å−3
  • Δρmin = −0.36 e Å−3

Data collection: SMART (Bruker, 2003 [triangle]); cell refinement: SAINT-Plus (Bruker, 2003 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809005571/ez2143sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809005571/ez2143Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Postgraduate Foundation of Taishan University (grant No. Y06-2-12) for financial support.

supplementary crystallographic information

Comment

Recently much attention has been paid to inorganic-organic hybrid frameworks that contain d-block transition metal ions and pyridyl ligands (Batten & Robson, 1998; Horikoshi & Mochida, 2006). These inorganic-organic hybrid frameworks form a wide range of interesting network topologies, such as chains, ladders or grids (Fujita et al., 1994; Luan et al. 2005). In these compounds, the combination of 4,4'-bipy and carboxylate ligands is largely directed toward obtaining interesting topologies (Tao et al., 2002). Here, we report the synthesis and crystal structure of the title complex, 1, which combines 4,4'-bipy and 4-methylbenzoate ligands.

Single-crystal X-ray diffraction studies reveal that the asymmetric unit contains the basic building block of 1, C26H22N2O4Cd.4(H2O), as shown in Figure 1. The highly distorted octahedral ZnII metal center is strongly coordinated to two N atoms of two 4,4'-bipy ligands [Zn—N, 2.064 (2) Å] and chelated to two 4-methylbenzoate anions [Zn1—O1, 2.159 (3) Å and Zn1—O2, 2.261 (3) Å]. The crystallographic inversion center and glide plane present at the center of the carbon-carbon single bond of the 4,4'-bipy ligand generate one-dimensional zig-zag coordination polymers. The zig-zag chains run approximately in parallel, as shown in Figure 2. The N1—Zn1—N1A [A: -x, y, 0.5 - z] angle of 105.4 (3)°, contributes to the chelate formation of the 4-methylbenzoate anions. The dihedral angles between the planes through 4,4'-bipy and 4-methylbenzoate are 84.68 (2)°. The Zn···Zn distances separated by the 4,4'-bipy are 11.20 (2) Å. The large number of included water molecules form one-dimensional chains through O—H···O hydrogen bonds.

Experimental

Zinc dichloride hexahydrate (2 mmol), 4-methylbenzoic acid (4 mmol) and 4,4'-bipy (2 mmol) were dissolved in a 3:1 ethanol-water solution (20 ml). Aqueous 0.1 M sodium hydroxide was added until the solution registered a pH of 7. The solution was set aside for the growth of crystals over several days. Anal. calc. for C26H30N2O8Zn: C 55.38, H 5.36, N 4.97%. Found: C 55.25, H 5.40, N 4.86%.

Refinement

All H atoms bound to C were placed in idealized positions (C—H = 0.93—0.97 Å) and refined as riding atoms, with the Uiso(H) = 1.2 or 1.5Ueq(C). Some H atoms bound to O were treated for 50:50 disorder, with all O—H bond lengths of 0.850 and Uiso(H) = 1.2 Ueq(O).

Figures

Fig. 1.
The structure of (I) showing 30% probability displacement ellipsoids and the atom-numbering scheme (A: -x, y, 0.5 - z).
Fig. 2.
The zig-zag chains of (I), with dashed lines indicating O—H···O hydrogen bonds.

Crystal data

[Zn(C7H7O2)2(C10H8N2)]·4H2OF(000) = 1176
Mr = 563.89Dx = 1.362 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 921 reflections
a = 12.024 (5) Åθ = 2.7–28.1°
b = 18.803 (8) ŵ = 0.94 mm1
c = 12.283 (5) ÅT = 298 K
β = 98.063 (6)°Block, yellow
V = 2750 (2) Å30.25 × 0.23 × 0.22 mm
Z = 4

Data collection

Bruker APEX area-detector diffractometer2439 independent reflections
Radiation source: fine-focus sealed tube2306 reflections with I > 2σ(I)
graphiteRint = 0.065
[var phi] and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Sheldrick, 2003)h = −14→14
Tmin = 0.799, Tmax = 0.820k = −22→22
9512 measured reflectionsl = −14→14

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H-atom parameters constrained
S = 0.90w = 1/[σ2(Fo2) + (0.0704P)2 + 5.1543P] where P = (Fo2 + 2Fc2)/3
2439 reflections(Δ/σ)max < 0.001
169 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = −0.36 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Zn10.00000.07933 (2)0.25000.04633 (19)
O10.1310 (2)0.06512 (15)0.3876 (2)0.0757 (7)
O20.1328 (2)−0.00574 (12)0.2496 (2)0.0744 (6)
N10.0873 (2)0.14583 (12)0.15842 (18)0.0468 (5)
C10.1739 (3)0.01398 (17)0.3444 (3)0.0587 (8)
C20.2720 (2)−0.02359 (15)0.4060 (3)0.0529 (7)
C30.2954 (3)−0.01735 (18)0.5189 (3)0.0658 (8)
H30.25220.01270.55600.079*
C40.3823 (3)−0.0552 (2)0.5773 (3)0.0734 (10)
H40.3961−0.05070.65340.088*
C50.4488 (3)−0.09957 (19)0.5252 (3)0.0695 (9)
C60.5420 (4)−0.1422 (3)0.5892 (4)0.1006 (15)
H6A0.5905−0.16030.53990.151*
H6B0.5105−0.18110.62520.151*
H6C0.5844−0.11230.64320.151*
C70.4265 (3)−0.1047 (2)0.4118 (4)0.0744 (10)
H70.4717−0.13350.37480.089*
C80.3386 (3)−0.06778 (18)0.3519 (3)0.0636 (8)
H80.3244−0.07270.27590.076*
C90.1610 (3)0.19327 (18)0.2051 (2)0.0670 (9)
H90.16950.19840.28110.080*
C100.2254 (3)0.23496 (18)0.1467 (2)0.0650 (9)
H100.27510.26780.18310.078*
C110.2161 (2)0.22802 (13)0.0331 (2)0.0436 (6)
C120.1406 (3)0.17860 (16)−0.0138 (2)0.0528 (7)
H120.13120.1717−0.08960.063*
C130.0785 (3)0.13905 (17)0.0500 (2)0.0542 (7)
H130.02800.10590.01550.065*
O30.0969 (2)0.14890 (13)0.70161 (19)0.0729 (7)
H3A0.10860.10500.71560.088*
H3B0.13080.16020.64790.088*0.50
H3C0.02690.15660.68550.088*0.50
O40.2054 (4)0.1867 (2)0.5310 (4)0.1517 (19)
H4A0.18760.15570.48130.182*
H4B0.23220.22280.50210.182*0.50
H4C0.14850.19830.56100.182*0.50

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Zn10.0510 (3)0.0440 (3)0.0457 (3)0.0000.01289 (19)0.000
O10.0696 (15)0.0948 (17)0.0643 (12)0.0361 (14)0.0153 (9)0.0181 (11)
O20.0714 (15)0.0537 (12)0.0922 (16)0.0085 (9)−0.0095 (13)0.0086 (10)
N10.0511 (13)0.0467 (12)0.0435 (12)−0.0026 (10)0.0095 (10)0.0015 (9)
C10.0548 (18)0.0560 (17)0.069 (2)0.0016 (14)0.0215 (15)0.0166 (15)
C20.0486 (16)0.0478 (15)0.0642 (18)0.0014 (12)0.0150 (13)0.0029 (13)
C30.075 (2)0.0558 (17)0.067 (2)0.0092 (16)0.0112 (16)−0.0018 (15)
C40.082 (3)0.0650 (19)0.069 (2)0.0048 (19)−0.0048 (18)0.0014 (17)
C50.0543 (19)0.0577 (18)0.093 (3)0.0000 (15)−0.0008 (18)0.0053 (18)
C60.074 (3)0.087 (3)0.134 (4)0.015 (2)−0.008 (3)0.015 (3)
C70.058 (2)0.062 (2)0.107 (3)0.0102 (16)0.0253 (19)−0.005 (2)
C80.062 (2)0.0624 (18)0.069 (2)0.0046 (15)0.0179 (16)−0.0025 (15)
C90.093 (3)0.070 (2)0.0378 (14)−0.0261 (18)0.0110 (15)−0.0016 (14)
C100.086 (2)0.0665 (19)0.0415 (15)−0.0329 (17)0.0068 (14)−0.0032 (13)
C110.0483 (14)0.0419 (13)0.0410 (13)0.0010 (11)0.0071 (11)0.0014 (10)
C120.0562 (17)0.0639 (17)0.0387 (13)−0.0126 (14)0.0082 (12)−0.0048 (12)
C130.0552 (17)0.0625 (17)0.0465 (15)−0.0146 (14)0.0122 (12)−0.0072 (13)
O30.0812 (17)0.0674 (14)0.0682 (15)0.0017 (12)0.0035 (12)0.0014 (11)
O40.194 (4)0.105 (3)0.183 (4)−0.051 (3)0.121 (4)−0.034 (3)

Geometric parameters (Å, °)

Zn1—N1i2.064 (2)C6—H6A0.9600
Zn1—N12.064 (2)C6—H6B0.9600
Zn1—O12.159 (3)C6—H6C0.9600
Zn1—O1i2.159 (3)C7—C81.386 (5)
Zn1—O22.261 (3)C7—H70.9300
Zn1—O2i2.261 (3)C8—H80.9300
Zn1—C1i2.559 (3)C9—C101.372 (4)
Zn1—C12.559 (3)C9—H90.9300
O1—C11.245 (4)C10—C111.390 (4)
O2—C11.255 (4)C10—H100.9300
N1—C91.330 (4)C11—C121.369 (4)
N1—C131.328 (4)C11—C11ii1.481 (5)
C1—C21.487 (4)C12—C131.374 (4)
C2—C81.386 (4)C12—H120.9300
C2—C31.381 (5)C13—H130.9300
C3—C41.379 (5)O3—H3A0.8501
C3—H30.9300O3—H3B0.8500
C4—C51.374 (6)O3—H3C0.8500
C4—H40.9300O4—H4A0.8500
C5—C71.385 (6)O4—H4B0.8501
C5—C61.506 (5)O4—H4C0.8501
N1i—Zn1—N1105.44 (13)C4—C3—C2120.7 (3)
N1i—Zn1—O191.10 (10)C4—C3—H3119.6
N1—Zn1—O197.52 (10)C2—C3—H3119.6
N1i—Zn1—O1i97.52 (10)C5—C4—C3121.3 (4)
N1—Zn1—O1i91.10 (9)C5—C4—H4119.4
O1—Zn1—O1i165.78 (15)C3—C4—H4119.4
N1i—Zn1—O2147.44 (10)C4—C5—C7117.8 (3)
N1—Zn1—O290.82 (10)C4—C5—C6121.3 (4)
O1—Zn1—O258.40 (10)C7—C5—C6120.8 (4)
O1i—Zn1—O2110.41 (10)C5—C6—H6A109.5
N1i—Zn1—O2i90.82 (10)C5—C6—H6B109.5
N1—Zn1—O2i147.44 (10)H6A—C6—H6B109.5
O1—Zn1—O2i110.41 (10)C5—C6—H6C109.5
O1i—Zn1—O2i58.40 (10)H6A—C6—H6C109.5
O2—Zn1—O2i89.92 (14)H6B—C6—H6C109.5
N1i—Zn1—C1i95.29 (10)C8—C7—C5121.6 (3)
N1—Zn1—C1i119.32 (10)C8—C7—H7119.2
O1—Zn1—C1i139.05 (12)C5—C7—H7119.2
O1i—Zn1—C1i29.05 (10)C7—C8—C2119.7 (3)
O2—Zn1—C1i101.07 (10)C7—C8—H8120.2
O2i—Zn1—C1i29.36 (10)C2—C8—H8120.2
N1i—Zn1—C1119.31 (10)N1—C9—C10123.3 (3)
N1—Zn1—C195.29 (10)N1—C9—H9118.4
O1—Zn1—C129.05 (10)C10—C9—H9118.4
O1i—Zn1—C1139.05 (12)C9—C10—C11120.0 (3)
O2—Zn1—C129.36 (10)C9—C10—H10120.0
O2i—Zn1—C1101.07 (10)C11—C10—H10120.0
C1i—Zn1—C1122.60 (15)C12—C11—C10116.2 (3)
C1—O1—Zn193.6 (2)C12—C11—C11ii122.0 (3)
C1—O2—Zn188.6 (2)C10—C11—C11ii121.8 (3)
C9—N1—C13116.8 (2)C13—C12—C11120.6 (3)
C9—N1—Zn1122.06 (19)C13—C12—H12119.7
C13—N1—Zn1120.93 (19)C11—C12—H12119.7
O1—C1—O2119.4 (3)N1—C13—C12123.2 (3)
O1—C1—C2119.8 (3)N1—C13—H13118.4
O2—C1—C2120.8 (3)C12—C13—H13118.4
O1—C1—Zn157.36 (18)H3A—O3—H3B108.4
O2—C1—Zn162.03 (18)H3A—O3—H3C110.1
C2—C1—Zn1176.3 (2)H3B—O3—H3C110.1
C8—C2—C3118.8 (3)H4A—O4—H4B108.7
C8—C2—C1120.7 (3)H4A—O4—H4C110.5
C3—C2—C1120.4 (3)H4B—O4—H4C110.5

Symmetry codes: (i) −x, y, −z+1/2; (ii) −x+1/2, −y+1/2, −z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O4—H4B···O4iii0.851.932.761 (7)167
O3—H3A···O2iv0.851.932.777 (4)179

Symmetry codes: (iii) −x+1/2, −y+1/2, −z+1; (iv) x, −y, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: EZ2143).

References

  • Batten, S. R. & Robson, R. (1998). Angew. Chem. Int. Ed.37, 1460–1494.
  • Bruker (2003). SMART and SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  • Fujita, M., Kwon, S. J., Washizu, S. & Ogura, K. (1994). J. Am. Chem. Soc.116, 1151–1152.
  • Horikoshi, R. & Mochida, T. (2006). Coord. Chem. Rev.250, 2595–2609.
  • Luan, X.-J., Wang, Y.-Y., Li, D.-S., Liu, P., Hu, H.-M., Shi, Q.-Z. & Peng, S.-M. (2005). Angew. Chem. Int. Ed.44, 3864–3867. [PubMed]
  • Sheldrick, G. M. (2003). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Tao, J., Yin, X., Huang, R. B. & Zheng, L. S. (2002). Inorg. Chem. Commun.5, 1000–1002.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography