PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 March 1; 65(Pt 3): o468.
Published online 2009 February 6. doi:  10.1107/S1600536809003882
PMCID: PMC2968617

3-Benzyl-5-butyl-1,3,5-thia­diazinane-2-thione

Abstract

In the title compound, C14H20N2S2, the 1,3,5-thia­diazinane-2-thione ring adopts an envelope conformation. The S=C bond length is 1.6776 (15) Å, whereas the S—C bond lengths are 1.7470 (15) and 1.8479 (17) Å. The intramolecular C—H(...)S hydrogen bond between the thione and the benzyl units along with the C—H(...)π interaction between the butyl group and the centroid of the benzene ring may be effective in stabilizing the molecule.

Related literature

For the synthesis of the 1,3,5-thia­diazinane-2-thione nucleus, see: Aboul-fadi et al. (2002 [triangle]); Ertan et al. (1991 [triangle], 1996 [triangle]). For its biological activity, see: Coro et al. (2005 [triangle]). For a related structure, see: Perez et al. (2001 [triangle]). For bond-length data, see: Allen (2002 [triangle]);

An external file that holds a picture, illustration, etc.
Object name is e-65-0o468-scheme1.jpg

Experimental

Crystal data

  • C14H20N2S2
  • M r = 280.44
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o468-efi1.jpg
  • a = 7.6559 (2) Å
  • b = 9.9586 (3) Å
  • c = 11.1531 (4) Å
  • α = 66.917 (2)°
  • β = 70.649 (1)°
  • γ = 76.076 (2)°
  • V = 732.03 (4) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.35 mm−1
  • T = 296 (2) K
  • 0.26 × 0.20 × 0.18 mm

Data collection

  • Bruker Kappa APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.922, T max = 0.942
  • 15790 measured reflections
  • 3759 independent reflections
  • 2990 reflections with I > 2σ(I)
  • R int = 0.025

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035
  • wR(F 2) = 0.100
  • S = 1.03
  • 3759 reflections
  • 163 parameters
  • H-atom parameters constrained
  • Δρmax = 0.22 e Å−3
  • Δρmin = −0.20 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2007 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and PLATON (Spek, 2003 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]) and PLATON (Spek, 2003 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809003882/at2719sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809003882/at2719Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the Higher Education Commission, Islamabad, Pakistan, for funding the purchase of the diffractometer at GCU, Lahore.

supplementary crystallographic information

Comment

1,3,5-Thiadiazinane-2-thione nucleus is an important pharmacophoric nucleus and large number of its analogs have been synthesized through different synthetic approaches, including amines and carbon disulfide in aqueous KOH, via diathiocarbamate salt intermediate (Ertan et al., 1991), from isothiocyanates and amines (Ertan et al., 1996), and resin supported solid phase organic synthesis (Aboul-fadi et al., 2002). Diverse bioactivities including antibacterial, antifungal, antimycobactarial, antitubercular, antiprotozoal, leishmanicidal, nematocidal and antiviral are reported for this nucleus in the literature (Coro et al., 2005).

The crystal structure of 5-(2-carboxyethyl)-3-(fur-2-ylmethyl)-tetrahydro- 2H-1,3,5-thiadiazine-2-thione (Perez et al., 2001) contains the same heterocyclic ring as the title compound (I), (Fig 1). The heterocyclic ring is in envelop form with the group (N1/C8/S2/C10/C9) in plane and the N2 displaced by -0.6778 (17) Å from it. The dihedral angle between the benzene ring A(C1—C6) and this group is 81.22 (5)°. The CCDC search (Allen et al., 2002) showed that there are very few crystal structures having 1,3,5-thiadiazinane-2-thione nucleus, so some important bond lengths and bond angles are given in Table 1.

There are no indications of intermolecular contacts, however some weak intramolecular H-bonding is given in Table 2 [CgA is a centroid of the phenyl ring C1–C6].

Experimental

The 1,3,5-thiadizinane thione was synthesized following the synthetic procedure reported by Ertan et al., 1991. Carbon disulfide (20 mmol) was added portion-wise to a magnetically stirred solution of benzylamine (2.18 ml, 20 mmol) and potassium hydroxide (20 mmol) in 30 ml of water. The contents were stirred for 4 h at room temperature. Formaldehyde (37%, 40 mmol) was added to the reaction mixture and stirred for further 1 h. The reaction content was filtered and the filtrate was added drop-wise to a suspension of n-butylamine (1.97 ml, 20 mmol) to the phosphate buffer (pH 7.8) and stirred for 1 h at ambient temperature. The filterate of the reaction mixture was exhaustively extracted with dichloromethane. The aqueous reaction content was acidified with 15% HCl. The precipitated product was filtered off under suction and thoroughly washed with water. The air dried product was re-crystallized from ethanol. A colourless crystalline product [yield: 76%, m.p.: 381–383 K] was obtained.

Refinement

H-atoms were positioned geometrically, with C—H = 0.93, 0.96 and 0.97 Å for aromatic, methyl and methylene H, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H, and x = 1.2 for all other H atoms.

Figures

Fig. 1.
ORTEP drawing of the title compound, with the atom numbering scheme. The thermal ellipsoids are drawn at the 30% probability level. H-atoms are shown by small circles of arbitrary radii. The intramolecular H-bonding is shown by dotted lines.

Crystal data

C14H20N2S2Z = 2
Mr = 280.44F(000) = 300
Triclinic, P1Dx = 1.272 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.6559 (2) ÅCell parameters from 2990 reflections
b = 9.9586 (3) Åθ = 2.1–28.7°
c = 11.1531 (4) ŵ = 0.35 mm1
α = 66.917 (2)°T = 296 K
β = 70.649 (1)°Prismatic, colourless
γ = 76.076 (2)°0.26 × 0.20 × 0.18 mm
V = 732.03 (4) Å3

Data collection

Bruker Kappa APEXII CCD diffractometer3759 independent reflections
Radiation source: fine-focus sealed tube2990 reflections with I > 2σ(I)
graphiteRint = 0.025
Detector resolution: 7.40 pixels mm-1θmax = 28.7°, θmin = 2.1°
ω scansh = −10→10
Absorption correction: multi-scan (SADABS; Bruker, 2005)k = −12→13
Tmin = 0.922, Tmax = 0.942l = −15→14
15790 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H-atom parameters constrained
S = 1.03w = 1/[σ2(Fo2) + (0.0507P)2 + 0.1133P] where P = (Fo2 + 2Fc2)/3
3759 reflections(Δ/σ)max < 0.001
163 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = −0.20 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.37143 (5)0.10537 (5)0.24801 (4)0.0559 (1)
S20.72763 (5)0.05293 (4)0.29926 (4)0.0542 (1)
N10.44875 (14)0.24375 (12)0.38422 (10)0.0392 (3)
N20.76229 (15)0.27317 (13)0.37678 (11)0.0446 (3)
C10.25768 (16)0.48352 (15)0.31596 (13)0.0404 (4)
C20.20907 (19)0.59310 (17)0.37238 (15)0.0501 (5)
C30.2155 (3)0.73893 (19)0.2912 (2)0.0663 (6)
C40.2704 (3)0.7760 (2)0.1528 (2)0.0733 (7)
C50.3168 (3)0.6681 (2)0.09567 (17)0.0680 (6)
C60.3104 (2)0.52245 (18)0.17638 (15)0.0525 (5)
C70.25828 (17)0.32402 (15)0.40427 (14)0.0447 (4)
C80.50163 (17)0.14720 (14)0.32035 (13)0.0408 (3)
C90.8377 (2)0.12518 (17)0.38223 (16)0.0541 (5)
C100.56811 (17)0.27834 (16)0.44744 (13)0.0431 (4)
C110.80744 (19)0.38248 (16)0.24024 (13)0.0449 (4)
C120.7732 (2)0.53983 (16)0.23571 (14)0.0488 (4)
C130.8309 (2)0.64508 (17)0.09273 (15)0.0560 (5)
C140.8034 (3)0.8041 (2)0.0821 (2)0.0821 (7)
H20.171730.568290.465890.0601*
H30.182750.811930.329930.0796*
H40.276030.874100.097820.0878*
H50.352700.693500.002100.0817*
H60.341430.450000.137120.0630*
H7A0.208280.317020.498310.0537*
H7B0.178440.278960.383140.0537*
H9A0.821250.062140.476070.0649*
H9B0.970690.121610.338910.0649*
H10A0.522720.375970.453080.0516*
H10B0.554800.209120.538980.0516*
H11A0.733750.373220.188580.0538*
H11B0.937880.360040.196400.0538*
H12A0.842920.549590.289690.0586*
H12B0.641620.565200.274720.0586*
H13A0.961610.617170.053630.0672*
H13B0.759500.635400.039770.0672*
H14A0.842860.86437−0.011090.1232*
H14B0.876060.815410.132280.1232*
H14C0.673800.833700.118280.1232*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0586 (2)0.0591 (2)0.0578 (2)−0.0195 (2)−0.0143 (2)−0.0221 (2)
S20.0483 (2)0.0444 (2)0.0635 (3)0.0008 (1)−0.0102 (2)−0.0197 (2)
N10.0350 (5)0.0416 (6)0.0381 (6)−0.0065 (4)−0.0072 (4)−0.0118 (5)
N20.0389 (5)0.0526 (7)0.0390 (6)−0.0087 (5)−0.0112 (4)−0.0100 (5)
C10.0315 (5)0.0469 (7)0.0422 (7)−0.0041 (5)−0.0099 (5)−0.0150 (6)
C20.0469 (7)0.0558 (9)0.0505 (8)−0.0020 (6)−0.0139 (6)−0.0230 (7)
C30.0691 (10)0.0496 (9)0.0874 (13)0.0017 (7)−0.0303 (9)−0.0284 (9)
C40.0758 (11)0.0464 (9)0.0843 (14)−0.0061 (8)−0.0335 (10)0.0005 (9)
C50.0694 (10)0.0707 (11)0.0470 (9)−0.0072 (8)−0.0176 (8)−0.0018 (8)
C60.0538 (8)0.0582 (9)0.0446 (8)−0.0032 (6)−0.0131 (6)−0.0189 (7)
C70.0341 (6)0.0493 (8)0.0443 (7)−0.0075 (5)−0.0021 (5)−0.0148 (6)
C80.0415 (6)0.0372 (6)0.0365 (6)−0.0109 (5)−0.0062 (5)−0.0052 (5)
C90.0422 (7)0.0555 (9)0.0545 (8)−0.0025 (6)−0.0164 (6)−0.0076 (7)
C100.0434 (6)0.0513 (8)0.0331 (6)−0.0106 (5)−0.0087 (5)−0.0115 (6)
C110.0448 (6)0.0506 (8)0.0380 (7)−0.0121 (5)−0.0067 (5)−0.0139 (6)
C120.0507 (7)0.0533 (8)0.0435 (8)−0.0120 (6)−0.0096 (6)−0.0169 (6)
C130.0636 (9)0.0532 (9)0.0485 (8)−0.0137 (7)−0.0140 (7)−0.0116 (7)
C140.0893 (13)0.0532 (10)0.0946 (15)−0.0123 (9)−0.0219 (11)−0.0158 (10)

Geometric parameters (Å, °)

S1—C81.6776 (15)C3—H30.9300
S2—C81.7470 (15)C4—H40.9300
S2—C91.8479 (17)C5—H50.9300
N1—C71.4760 (19)C6—H60.9300
N1—C81.3246 (18)C7—H7A0.9700
N1—C101.4899 (18)C7—H7B0.9700
N2—C91.433 (2)C9—H9A0.9700
N2—C101.4326 (19)C9—H9B0.9700
N2—C111.4683 (18)C10—H10A0.9700
C1—C21.383 (2)C10—H10B0.9700
C1—C61.387 (2)C11—H11A0.9700
C1—C71.505 (2)C11—H11B0.9700
C2—C31.380 (3)C12—H12A0.9700
C3—C41.376 (3)C12—H12B0.9700
C4—C51.375 (3)C13—H13A0.9700
C5—C61.378 (3)C13—H13B0.9700
C11—C121.509 (2)C14—H14A0.9600
C12—C131.511 (2)C14—H14B0.9600
C13—C141.508 (3)C14—H14C0.9600
C2—H20.9300
S1···H63.1400H9A···S1iii2.9300
S1···H7B2.6000H9B···S1vi2.8800
S1···H9Bi2.8800H9B···H11B2.2900
S1···H5ii3.1600H10A···C12.7100
S1···H9Aiii2.9300H10A···C22.9400
S1···H10Biii3.1600H10A···C122.7500
S2···H11A2.9400H10A···H7A2.4600
N1···H11A2.6800H10A···H12B2.2400
C6···C83.593 (2)H10B···H9A2.2800
C8···C113.374 (2)H10B···S1iii3.1600
C8···C63.593 (2)H11A···S22.9400
C11···C83.374 (2)H11A···N12.6800
C1···H12B3.0800H11A···C82.8300
C1···H10A2.7100H11A···H13B2.5000
C2···H10A2.9400H11B···H9B2.2900
C4···H14Bi3.0200H11B···H13A2.4400
C5···H13Ai3.0900H11B···H13Avii2.5700
C8···H11A2.8300H12A···H14B2.5600
C10···H12B2.8200H12A···H2v2.4800
C12···H10A2.7500H12B···C13.0800
C14···H4iv3.0800H12B···C102.8200
H2···H7A2.3400H12B···H10A2.2400
H2···H12Av2.4800H12B···H14C2.5700
H4···C14iv3.0800H13A···C5vi3.0900
H4···H14Aiv2.4500H13A···H11B2.4400
H5···S1ii3.1600H13A···H11Bvii2.5700
H6···S13.1400H13B···H11A2.5000
H7A···H22.3400H14A···H4iv2.4500
H7A···H10A2.4600H14B···C4vi3.0200
H7B···S12.6000H14B···H12A2.5600
H9A···H10B2.2800H14C···H12B2.5700
C8—S2—C9103.11 (7)N1—C7—H7B109.00
C7—N1—C8122.01 (12)C1—C7—H7A109.00
C7—N1—C10113.20 (11)C1—C7—H7B109.00
C8—N1—C10124.74 (12)H7A—C7—H7B108.00
C9—N2—C10109.50 (12)S2—C9—H9A109.00
C9—N2—C11113.75 (12)S2—C9—H9B109.00
C10—N2—C11115.24 (12)N2—C9—H9A109.00
C2—C1—C6119.00 (14)N2—C9—H9B109.00
C2—C1—C7120.70 (12)H9A—C9—H9B108.00
C6—C1—C7120.29 (14)N1—C10—H10A109.00
C1—C2—C3120.62 (15)N1—C10—H10B109.00
C2—C3—C4119.82 (18)N2—C10—H10A109.00
C3—C4—C5120.03 (18)N2—C10—H10B109.00
C4—C5—C6120.31 (16)H10A—C10—H10B108.00
C1—C6—C5120.21 (16)N2—C11—H11A109.00
N1—C7—C1111.22 (11)N2—C11—H11B109.00
S1—C8—S2112.92 (8)C12—C11—H11A109.00
S1—C8—N1126.10 (11)C12—C11—H11B109.00
S2—C8—N1120.94 (11)H11A—C11—H11B108.00
S2—C9—N2113.13 (11)C11—C12—H12A109.00
N1—C10—N2114.50 (11)C11—C12—H12B109.00
N2—C11—C12114.63 (12)C13—C12—H12A109.00
C11—C12—C13111.58 (12)C13—C12—H12B109.00
C12—C13—C14113.99 (14)H12A—C12—H12B108.00
C1—C2—H2120.00C12—C13—H13A109.00
C3—C2—H2120.00C12—C13—H13B109.00
C2—C3—H3120.00C14—C13—H13A109.00
C4—C3—H3120.00C14—C13—H13B109.00
C3—C4—H4120.00H13A—C13—H13B108.00
C5—C4—H4120.00C13—C14—H14A109.00
C4—C5—H5120.00C13—C14—H14B109.00
C6—C5—H5120.00C13—C14—H14C109.00
C1—C6—H6120.00H14A—C14—H14B109.00
C5—C6—H6120.00H14A—C14—H14C109.00
N1—C7—H7A109.00H14B—C14—H14C109.00
C9—S2—C8—S1178.01 (8)C9—N2—C11—C12−165.23 (13)
C9—S2—C8—N1−0.05 (12)C10—N2—C11—C1267.14 (17)
C8—S2—C9—N2−29.53 (12)C6—C1—C2—C3−1.0 (2)
C8—N1—C7—C1−108.21 (14)C7—C1—C2—C3177.50 (17)
C10—N1—C7—C174.18 (14)C2—C1—C6—C51.0 (2)
C7—N1—C8—S12.68 (19)C7—C1—C6—C5−177.45 (17)
C7—N1—C8—S2−179.54 (10)C2—C1—C7—N1−114.76 (15)
C10—N1—C8—S1−180.00 (10)C6—C1—C7—N163.68 (17)
C10—N1—C8—S2−2.21 (18)C1—C2—C3—C40.1 (3)
C7—N1—C10—N2−147.79 (12)C2—C3—C4—C50.7 (4)
C8—N1—C10—N234.68 (18)C3—C4—C5—C6−0.6 (4)
C10—N2—C9—S262.06 (13)C4—C5—C6—C1−0.2 (3)
C11—N2—C9—S2−68.49 (15)N2—C11—C12—C13177.42 (13)
C9—N2—C10—N1−65.65 (15)C11—C12—C13—C14−178.86 (16)
C11—N2—C10—N164.09 (17)

Symmetry codes: (i) x−1, y, z; (ii) −x+1, −y+1, −z; (iii) −x+1, −y, −z+1; (iv) −x+1, −y+2, −z; (v) −x+1, −y+1, −z+1; (vi) x+1, y, z; (vii) −x+2, −y+1, −z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C7—H7B···S10.972.603.0978 (16)112
C12—H12B···CgA0.972.963.7937 (19)145

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2719).

References

  • Aboul-fadi, T., Hussein, M. A., El-Shorbagi, A. N. & Khalil, A. R. (2002). Arch. Pharm. Med. Chem.9, 438–442. [PubMed]
  • Allen, F. H. (2002). Acta Cryst. B58, 380–388. [PubMed]
  • Bruker (2005). SADABS Bruker AXS Inc. Madison, Wisconsin, USA.
  • Bruker (2007). APEX2 and SAINT Bruker AXS Inc. Madison, Wisconsin, USA.
  • Coro, J., Perez, R., Rodriguez, H., Suarez, M., Vega, C., Rolon, M., Montero, D., Nogal, J. J. & Gomez-Barrio, A. (2005). Bioorg. Med. Chem.13, 3413–3421. [PubMed]
  • Ertan, M., Ayyildiz, H. G. & Yulug, N. (1991). Arzneim. Forsch. Drug Res.41, 1182–1185. [PubMed]
  • Ertan, M., Tayman, A. B. & Yulung, N. (1996). Arch. Pharmacol.323, 605–609. [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Perez, R., Suarez, M., Ochoa, E., Rodriguez, H., Martin, N., Seoane, C., Novoa, H., Blaton, N., Peeters, O. M. & De Ranter, C. (2001). Tetrahedron, 57, 7361–7367.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography