PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 March 1; 65(Pt 3): o493.
Published online 2009 February 11. doi:  10.1107/S1600536809004115
PMCID: PMC2968611

(E)-4-Methyl-N-(2,3,4-trimeth­oxy-6-methyl­benzyl­idene)aniline

Abstract

In the title mol­ecule, C18H21NO3, the dihedral angle between the two benzene rings is 42.2 (2)° and it adopts a trans configuration with respect to the central C=N bond.

Related literature

For the structure of the related compound (E)-N-(2,3,4-trimeth­oxy-6-methyl­benzyl­idene)naphthalen-1-amine, see: Wang (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o493-scheme1.jpg

Experimental

Crystal data

  • C18H21NO3
  • M r = 299.36
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o493-efi1.jpg
  • a = 7.7239 (9) Å
  • b = 27.287 (2) Å
  • c = 8.4128 (11) Å
  • β = 111.529 (2)°
  • V = 1649.4 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 298 (2) K
  • 0.45 × 0.43 × 0.40 mm

Data collection

  • Bruker SMART CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.964, T max = 0.968
  • 8258 measured reflections
  • 2899 independent reflections
  • 1475 reflections with I > 2σ(I)
  • R int = 0.055

Refinement

  • R[F 2 > 2σ(F 2)] = 0.053
  • wR(F 2) = 0.150
  • S = 1.02
  • 2899 reflections
  • 199 parameters
  • H-atom parameters constrained
  • Δρmax = 0.19 e Å−3
  • Δρmin = −0.18 e Å−3

Data collection: SMART (Bruker, 1997 [triangle]); cell refinement: SAINT (Bruker, 1997 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809004115/lh2770sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809004115/lh2770Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

The preparation, properties and applications of Schiff bases are important in the development of coordination chemistry. In this paper, the structure of the title compound, (I), is reported. The molecular structure of (I) is illustrated in Fig. 1. The bond lengths and angles of the title compound agree with those in the related compound (E)-N-(2,3,4-trimethoxy-6-methylbenzylidene)naphthalen-1-amine (Wang, 2009), as representative example. The dihedral angle between between the two phenyl rings is 137.8 (2) °. The molecule adopts a trans configuration about the central C=N functional bond. In the crystal structure, molecules pack in a 'herring-bone' fashion along the b axis direction (see fig. 2).

Experimental

A mixture of p-toluidine (0.535 g, 5 mmol) and 2,3,4-trimethoxy-6-methylbenzaldehyde (1.04 g, 5 mmol) in ethyl alcohol (20 ml) was stirred magnetically for 2 h at reflux temperature. After cooling the precipitate was filtered and dried. The crude product of 20 mg was dissolved in a 20 ml of ethylalcohol by heating on a magnetic stirrer. The solution was filtered to remove impurities, and then left to crystallize at room temperature. After a week single crystals suitable for the X-ray crystal structure determination were obtained.

Refinement

The H atoms were positioned geometrically (C—H = 0.93–0.96 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5 Ueq(methyl C).

Figures

Fig. 1.
The molecular structure of (I), drawn with 30% probability ellipsoids.
Fig. 2.
Part of the crystal structure of (I).

Crystal data

C18H21NO3F(000) = 640
Mr = 299.36Dx = 1.206 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1422 reflections
a = 7.7239 (9) Åθ = 2.7–20.0°
b = 27.287 (2) ŵ = 0.08 mm1
c = 8.4128 (11) ÅT = 298 K
β = 111.529 (2)°Block, brown
V = 1649.4 (3) Å30.45 × 0.43 × 0.40 mm
Z = 4

Data collection

Bruker SMART CCD diffractometer2899 independent reflections
Radiation source: fine-focus sealed tube1475 reflections with I > 2σ(I)
graphiteRint = 0.055
[var phi] and ω scansθmax = 25.0°, θmin = 1.5°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −9→9
Tmin = 0.964, Tmax = 0.968k = −30→32
8258 measured reflectionsl = −9→5

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.150H-atom parameters constrained
S = 1.02w = 1/[σ2(Fo2) + (0.0477P)2 + 0.6503P] where P = (Fo2 + 2Fc2)/3
2899 reflections(Δ/σ)max < 0.001
199 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = −0.18 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N10.9325 (3)0.15463 (10)0.3804 (4)0.0607 (7)
O10.9997 (3)0.09590 (7)−0.0287 (2)0.0536 (6)
O20.7379 (3)0.04533 (8)−0.2839 (3)0.0628 (6)
O30.3972 (3)0.02973 (8)−0.2724 (3)0.0640 (6)
C10.9412 (4)0.13395 (11)0.2492 (4)0.0520 (8)
H11.05490.13510.23480.062*
C20.7898 (4)0.10855 (10)0.1187 (4)0.0448 (7)
C30.8252 (4)0.08912 (10)−0.0207 (4)0.0451 (7)
C40.6955 (4)0.06230 (10)−0.1484 (4)0.0466 (7)
C50.5201 (4)0.05545 (10)−0.1404 (4)0.0481 (8)
C60.4808 (4)0.07464 (11)−0.0057 (4)0.0506 (8)
H60.36320.0698−0.00190.061*
C70.6114 (4)0.10096 (10)0.1238 (4)0.0512 (8)
C81.0063 (5)0.13609 (12)−0.1356 (5)0.0742 (11)
H8A0.92140.1302−0.25020.111*
H8B1.13030.1393−0.13500.111*
H8C0.97170.1657−0.09330.111*
C90.7579 (5)−0.00633 (14)−0.2860 (5)0.0790 (11)
H9A0.8493−0.0169−0.17930.119*
H9B0.7973−0.0154−0.37770.119*
H9C0.6408−0.0217−0.30230.119*
C100.2178 (4)0.01986 (14)−0.2686 (4)0.0737 (11)
H10A0.23090.0048−0.16170.111*
H10B0.1515−0.0018−0.36070.111*
H10C0.14990.0500−0.28080.111*
C110.5545 (5)0.11989 (13)0.2664 (5)0.0774 (11)
H11A0.42510.11310.24020.116*
H11B0.57490.15460.27790.116*
H11C0.62750.10400.37150.116*
C121.0977 (4)0.17428 (11)0.5029 (4)0.0501 (8)
C131.2692 (4)0.15170 (11)0.5499 (4)0.0566 (9)
H131.28160.12280.49650.068*
C141.4218 (4)0.17184 (12)0.6755 (4)0.0623 (9)
H141.53630.15620.70450.075*
C151.4108 (4)0.21420 (12)0.7595 (4)0.0596 (9)
C161.2394 (5)0.23596 (12)0.7127 (4)0.0678 (10)
H161.22720.26470.76680.081*
C171.0854 (5)0.21645 (12)0.5881 (4)0.0653 (10)
H170.97080.23190.56070.078*
C181.5798 (5)0.23466 (14)0.8988 (5)0.0950 (13)
H18A1.66650.24650.85010.143*
H18B1.63750.20940.98060.143*
H18C1.54310.26120.95460.143*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0504 (16)0.0693 (19)0.0638 (19)−0.0076 (14)0.0229 (15)−0.0111 (15)
O10.0471 (12)0.0616 (14)0.0591 (14)−0.0011 (10)0.0279 (10)0.0078 (11)
O20.0767 (15)0.0720 (16)0.0501 (14)−0.0086 (12)0.0355 (12)−0.0009 (11)
O30.0516 (13)0.0881 (17)0.0500 (14)−0.0170 (12)0.0159 (11)−0.0071 (12)
C10.0486 (19)0.0546 (19)0.061 (2)−0.0062 (15)0.0293 (17)0.0001 (17)
C20.0424 (17)0.0433 (17)0.0525 (19)−0.0031 (14)0.0220 (15)−0.0009 (14)
C30.0414 (17)0.0468 (18)0.0517 (19)−0.0009 (14)0.0225 (15)0.0067 (15)
C40.0497 (19)0.0529 (19)0.0403 (18)−0.0016 (15)0.0200 (15)0.0060 (15)
C50.0437 (18)0.0512 (19)0.0470 (19)−0.0039 (15)0.0140 (15)0.0036 (15)
C60.0449 (18)0.0546 (19)0.056 (2)−0.0047 (15)0.0224 (16)0.0009 (16)
C70.0529 (19)0.0495 (19)0.059 (2)−0.0036 (15)0.0292 (17)−0.0030 (16)
C80.068 (2)0.075 (2)0.095 (3)−0.0027 (19)0.048 (2)0.023 (2)
C90.090 (3)0.081 (3)0.082 (3)−0.008 (2)0.051 (2)−0.016 (2)
C100.053 (2)0.099 (3)0.063 (2)−0.0190 (19)0.0128 (18)−0.003 (2)
C110.067 (2)0.088 (3)0.095 (3)−0.021 (2)0.052 (2)−0.033 (2)
C120.0501 (19)0.0525 (19)0.0501 (19)−0.0024 (16)0.0212 (16)0.0005 (16)
C130.062 (2)0.0442 (19)0.067 (2)0.0038 (17)0.0269 (19)−0.0008 (16)
C140.049 (2)0.059 (2)0.072 (2)0.0071 (17)0.0150 (18)0.0057 (19)
C150.059 (2)0.051 (2)0.061 (2)−0.0044 (17)0.0131 (18)−0.0014 (17)
C160.068 (2)0.056 (2)0.075 (2)0.0058 (19)0.021 (2)−0.0140 (18)
C170.052 (2)0.066 (2)0.076 (3)0.0088 (17)0.0201 (19)−0.0124 (19)
C180.077 (3)0.087 (3)0.091 (3)−0.009 (2)−0.005 (2)−0.012 (2)

Geometric parameters (Å, °)

N1—C11.263 (3)C9—H9B0.9600
N1—C121.419 (4)C9—H9C0.9600
O1—C31.386 (3)C10—H10A0.9600
O1—C81.431 (3)C10—H10B0.9600
O2—C41.377 (3)C10—H10C0.9600
O2—C91.419 (4)C11—H11A0.9600
O3—C51.361 (3)C11—H11B0.9600
O3—C101.423 (3)C11—H11C0.9600
C1—C21.453 (4)C12—C171.377 (4)
C1—H10.9300C12—C131.380 (4)
C2—C31.402 (4)C13—C141.376 (4)
C2—C71.409 (4)C13—H130.9300
C3—C41.380 (4)C14—C151.373 (4)
C4—C51.393 (4)C14—H140.9300
C5—C61.380 (4)C15—C161.370 (4)
C6—C71.384 (4)C15—C181.505 (4)
C6—H60.9300C16—C171.372 (4)
C7—C111.512 (4)C16—H160.9300
C8—H8A0.9600C17—H170.9300
C8—H8B0.9600C18—H18A0.9600
C8—H8C0.9600C18—H18B0.9600
C9—H9A0.9600C18—H18C0.9600
C1—N1—C12118.8 (3)O3—C10—H10A109.5
C3—O1—C8113.1 (2)O3—C10—H10B109.5
C4—O2—C9113.8 (2)H10A—C10—H10B109.5
C5—O3—C10118.2 (2)O3—C10—H10C109.5
N1—C1—C2125.9 (3)H10A—C10—H10C109.5
N1—C1—H1117.0H10B—C10—H10C109.5
C2—C1—H1117.0C7—C11—H11A109.5
C3—C2—C7117.6 (3)C7—C11—H11B109.5
C3—C2—C1117.5 (3)H11A—C11—H11B109.5
C7—C2—C1124.9 (3)C7—C11—H11C109.5
C4—C3—O1118.3 (3)H11A—C11—H11C109.5
C4—C3—C2122.9 (3)H11B—C11—H11C109.5
O1—C3—C2118.8 (3)C17—C12—C13117.8 (3)
O2—C4—C3119.9 (3)C17—C12—N1118.6 (3)
O2—C4—C5121.7 (3)C13—C12—N1123.5 (3)
C3—C4—C5118.3 (3)C14—C13—C12120.2 (3)
O3—C5—C6124.6 (3)C14—C13—H13119.9
O3—C5—C4115.4 (3)C12—C13—H13119.9
C6—C5—C4120.0 (3)C15—C14—C13122.3 (3)
C5—C6—C7121.8 (3)C15—C14—H14118.9
C5—C6—H6119.1C13—C14—H14118.9
C7—C6—H6119.1C16—C15—C14116.9 (3)
C6—C7—C2119.4 (3)C16—C15—C18122.2 (3)
C6—C7—C11117.5 (3)C14—C15—C18120.9 (3)
C2—C7—C11123.1 (3)C15—C16—C17121.8 (3)
O1—C8—H8A109.5C15—C16—H16119.1
O1—C8—H8B109.5C17—C16—H16119.1
H8A—C8—H8B109.5C16—C17—C12121.0 (3)
O1—C8—H8C109.5C16—C17—H17119.5
H8A—C8—H8C109.5C12—C17—H17119.5
H8B—C8—H8C109.5C15—C18—H18A109.5
O2—C9—H9A109.5C15—C18—H18B109.5
O2—C9—H9B109.5H18A—C18—H18B109.5
H9A—C9—H9B109.5C15—C18—H18C109.5
O2—C9—H9C109.5H18A—C18—H18C109.5
H9A—C9—H9C109.5H18B—C18—H18C109.5
H9B—C9—H9C109.5
C12—N1—C1—C2174.7 (3)O3—C5—C6—C7−179.3 (3)
N1—C1—C2—C3178.1 (3)C4—C5—C6—C70.1 (4)
N1—C1—C2—C7−3.5 (5)C5—C6—C7—C20.1 (4)
C8—O1—C3—C483.9 (3)C5—C6—C7—C11−179.3 (3)
C8—O1—C3—C2−97.8 (3)C3—C2—C7—C60.7 (4)
C7—C2—C3—C4−1.6 (4)C1—C2—C7—C6−177.7 (3)
C1—C2—C3—C4176.9 (3)C3—C2—C7—C11−180.0 (3)
C7—C2—C3—O1−179.8 (2)C1—C2—C7—C111.6 (5)
C1—C2—C3—O1−1.3 (4)C1—N1—C12—C17145.4 (3)
C9—O2—C4—C3110.9 (3)C1—N1—C12—C13−39.0 (4)
C9—O2—C4—C5−72.6 (3)C17—C12—C13—C14−1.3 (5)
O1—C3—C4—O2−3.4 (4)N1—C12—C13—C14−177.0 (3)
C2—C3—C4—O2178.4 (3)C12—C13—C14—C150.6 (5)
O1—C3—C4—C5180.0 (2)C13—C14—C15—C160.0 (5)
C2—C3—C4—C51.8 (4)C13—C14—C15—C18178.7 (3)
C10—O3—C5—C6−2.9 (4)C14—C15—C16—C170.2 (5)
C10—O3—C5—C4177.7 (3)C18—C15—C16—C17−178.5 (3)
O2—C4—C5—O31.9 (4)C15—C16—C17—C12−0.9 (5)
C3—C4—C5—O3178.4 (2)C13—C12—C17—C161.5 (5)
O2—C4—C5—C6−177.5 (3)N1—C12—C17—C16177.4 (3)
C3—C4—C5—C6−1.0 (4)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2770).

References

  • Bruker (1997). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wang, C.-Y. (2009). Acta Cryst. E65, o56. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography