PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 March 1; 65(Pt 3): o628–o629.
Published online 2009 February 28. doi:  10.1107/S1600536809006072
PMCID: PMC2968595

3,4-Dimethyl­anilinium chloride monohydrate

Abstract

The crystal structure of the title compound, C8H12N+·Cl·H2O, consists of hydro­phobic layers of dimethyl­anilinium cations parallel to the bc plane alternated by hydro­philic layers of chloride anions and water mol­ecules. The layers are linked by N—H(...)O and N—H(...)Cl hydrogen bonds involving the ammonium groups of the cations. The cohesion of the ionic structure is further stabilized by O—H(...)Cl hydrogen-bonding inter­actions.

Related literature

For crystal structures containing the dimethyl­anilinium cation, see: Bouacida (2008 [triangle]); Singh et al. (2002 [triangle]); Singh et al. (1995a [triangle],b [triangle]); Linden et al. (1995 [triangle]); Fábry et al. (2001 [triangle], 2002 [triangle]). For the crystal structures of related protonated amines, see: Bouacida et al. (2005a [triangle],b [triangle],c [triangle], 2006 [triangle], 2007 [triangle]); Benslimane et al. (2007 [triangle]); Rademeyer (2004a [triangle],b [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o628-scheme1.jpg

Experimental

Crystal data

  • C8H12N+·Cl·H2O
  • M r = 175.65
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o628-efi1.jpg
  • a = 18.230 (18) Å
  • b = 6.7854 (14) Å
  • c = 7.916 (2) Å
  • V = 979.2 (10) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.34 mm−1
  • T = 295 K
  • 0.1 × 0.04 × 0.02 mm

Data collection

  • Enraf–Nonius KappaCCD diffractometer
  • Absorption correction: none
  • 10115 measured reflections
  • 2181 independent reflections
  • 1403 reflections with I > 2σ(I)
  • R int = 0.078

Refinement

  • R[F 2 > 2σ(F 2)] = 0.059
  • wR(F 2) = 0.109
  • S = 1.15
  • 2181 reflections
  • 109 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.20 e Å−3
  • Δρmin = −0.22 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 976 Friedel pairs
  • Flack parameter: 0.01 (11)

Data collection: COLLECT (Nonius, 1998 [triangle]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997 [triangle]); data reduction: DENZO (Otwinowski & Minor, 1997 [triangle]); and SCALEPACK program(s) used to solve structure: SIR2002 (Burla et al., 2003 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and DIAMOND (Brandenburg et al., 2001 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809006072/rz2296sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809006072/rz2296Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful to Dr Thierry Roisnel, Centre de Diffractométrie X (CDIFX) de Rennes, Université de Rennes 1, France, for the data collection facilities. SB thanks Université A. Mira de Béjaia, Algéria, for financial support.

supplementary crystallographic information

Comment

The title compound, was prepared as part of our ongoing studies of hydrogen-bonding interactions in the crystal structure of protonated amines (Bouacida et al., 2005a,b,c; Bouacida et al., 2006; Benslimane et al., 2007; Bouacida et al., 2007). Structures containing the dimethylanilinium cation have been already reported with tin chloride (Bouacida, 2008), sulfate (Singh et al., 2002), nitrate and perchlorate (Singh et al., 1995a,b), chloride (Linden et al., 1995), and dihydrogenphosphate (Fabry et al., 2001; Fábry et al., 2002).

The molecular structure of the title compound is illustrated in Fig. 1. A l l bond distances and angles are within the ranges of accepted values. The amino N atom is protonated as in other aminoacids (Bouacida et al., 2006; Rademeyer 2004a,b). A diagram of the layered crystal packing of title compound is shown in Fig. 2, in which the cations are arranged to form zigzag layers parallel the ab plane, with the chloride ions and water molecules located between these layers. The structure may be also described as formed by hydrophobic layers parallel to the bc plane of dimethylanilinium cations alternated by hydrophilic layers of chloride anions and water molecules. In this structure, three types of classical hydrogen bonds are observed, viz. cation–anion, cation–water and water–anion (Fig. 3, Table 1). All three ammonium H atoms are involved in hydrogen bonds. These interactions link the molecules within the layers and also link the layers together, forming a three-dimensional network and reinforcing the cohesion of the ionic structure.

Experimental

An aqueous solution of SnCl2.2H2O (1 mmol) and 3,4-dimethylaniline (2 mmol) in hydrochloric acid was slowly evaporated to dryness for two weeks. White single crystals of the title compound were carefully isolated under polarizing microscope for X-ray diffraction analysis

Refinement

The water H atoms were located in a difference Fourier map and refined isotropically, with Uiso(H) =1.25(O). All other H atoms were localized in difference Fourier maps but introduced in calculated positions and treated as riding on their parent atoms, with C—H = 0.93–0.96 Å, N—H = 0.89Å and Uiso(H) = 1.2 Ueq(C, N) or 1.5 Ueq(C) for methyl H atoms.

Figures

Fig. 1.
The structure of the title compound with the atomic labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
A diagram of the layered crystal packing in the title comound, viewed down the a axis.
Fig. 3.
Crystal packing of the title compound viewed down the b axis. H bonds are shown as dashed lines.

Crystal data

C8H12N+·Cl·H2OF(000) = 376
Mr = 175.65Dx = 1.191 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 9401 reflections
a = 18.230 (18) Åθ = 3.7–27.5°
b = 6.7854 (14) ŵ = 0.34 mm1
c = 7.916 (2) ÅT = 295 K
V = 979.2 (10) Å3Stalk, white
Z = 40.1 × 0.04 × 0.02 mm

Data collection

Enraf–Nonius KappaCCD diffractometerRint = 0.078
CCD rotation images, thick slices scansθmax = 27.5°, θmin = 3.7°
10115 measured reflectionsh = −23→23
2181 independent reflectionsk = −8→8
1403 reflections with I > 2σ(I)l = −10→9

Refinement

Refinement on F2H atoms treated by a mixture of independent and constrained refinement
Least-squares matrix: fullw = 1/[σ2(Fo2) + (0.0307P)2 + 0.3106P] where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.059(Δ/σ)max < 0.001
wR(F2) = 0.109Δρmax = 0.20 e Å3
S = 1.15Δρmin = −0.21 e Å3
2181 reflectionsAbsolute structure: Flack (1983), 976 Friedel pairs
109 parametersFlack parameter: 0.01 (11)
1 restraint

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N10.06494 (14)0.5513 (4)0.2268 (4)0.0433 (10)
C10.14146 (17)0.4809 (5)0.2159 (4)0.0395 (11)
C20.1556 (2)0.3036 (6)0.1426 (5)0.0447 (12)
C30.22856 (19)0.2362 (5)0.1269 (4)0.0430 (13)
C40.28449 (18)0.3555 (5)0.1893 (5)0.0444 (11)
C50.2677 (2)0.5332 (6)0.2641 (5)0.0517 (14)
C60.1959 (2)0.5966 (5)0.2776 (5)0.0467 (12)
C70.2432 (3)0.0413 (6)0.0454 (6)0.0670 (19)
C80.3636 (2)0.2894 (7)0.1744 (7)0.0693 (16)
O1W0.0447 (3)0.8297 (5)0.4757 (4)0.0818 (13)
Cl10.04002 (5)0.77733 (12)0.87943 (11)0.0507 (3)
H1A0.061540.643000.306780.0650*
H1B0.035590.450760.252170.0650*
H1C0.051580.602530.127950.0650*
H20.117120.226550.102640.0534*
H50.305250.611750.306230.0620*
H60.185050.716750.328340.0559*
H7A0.276190.05896−0.047940.1007*
H7B0.19792−0.013810.005320.1007*
H7C0.26488−0.046430.126370.1007*
H8A0.395370.393190.212270.1038*
H8B0.374360.258670.058700.1038*
H8C0.371120.174440.242960.1038*
H1W0.046 (3)0.824 (9)0.576 (7)0.1038*
H2W0.022 (3)0.927 (8)0.447 (7)0.1038*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0455 (16)0.0461 (17)0.0383 (18)0.0025 (13)−0.0007 (14)0.0048 (14)
C10.0384 (18)0.044 (2)0.0361 (19)0.0062 (16)0.0041 (17)0.0089 (18)
C20.051 (2)0.043 (2)0.040 (2)−0.0076 (17)0.0008 (19)0.0070 (18)
C30.060 (3)0.039 (2)0.0300 (17)0.0022 (17)0.004 (2)0.0089 (17)
C40.047 (2)0.051 (2)0.0353 (19)0.0013 (17)0.0013 (19)0.010 (2)
C50.052 (2)0.051 (2)0.052 (3)−0.0056 (18)−0.006 (2)0.002 (2)
C60.049 (2)0.045 (2)0.046 (2)0.0024 (18)−0.0018 (19)0.0034 (18)
C70.097 (4)0.048 (3)0.056 (3)0.012 (2)0.008 (3)0.000 (2)
C80.052 (2)0.082 (3)0.074 (3)0.009 (2)0.007 (3)0.011 (3)
O1W0.127 (3)0.066 (2)0.0523 (18)0.037 (2)−0.004 (2)−0.0054 (17)
Cl10.0555 (4)0.0492 (5)0.0475 (4)0.0042 (4)−0.0028 (6)0.0044 (6)

Geometric parameters (Å, °)

O1W—H2W0.81 (5)C4—C51.378 (6)
O1W—H1W0.80 (6)C5—C61.382 (5)
N1—C11.477 (4)C2—H20.9300
N1—H1A0.8900C5—H50.9300
N1—H1C0.8900C6—H60.9300
N1—H1B0.8900C7—H7B0.9600
C1—C21.360 (5)C7—H7C0.9600
C1—C61.356 (5)C7—H7A0.9600
C2—C31.412 (5)C8—H8C0.9600
C3—C71.496 (6)C8—H8A0.9600
C3—C41.392 (5)C8—H8B0.9600
C4—C81.515 (5)
Cl1···O1W3.217 (5)C8···H7A2.8400
Cl1···N1i3.181 (4)H1A···H2W2.3400
Cl1···N1ii3.177 (4)H1A···O1W1.8700
Cl1···O1Wiii3.174 (5)H1A···H62.3100
Cl1···H1W2.43 (6)H1A···H1W2.4800
Cl1···H1Ci2.3100H1B···Cl1vi2.3000
Cl1···H1Bii2.3000H1B···H22.4300
Cl1···H5iv3.0900H1C···Cl1vii2.3100
Cl1···H2Wiii2.36 (5)H1W···H1A2.4800
O1W···Cl1v3.174 (5)H1W···Cl12.43 (6)
O1W···N12.754 (5)H2···H1B2.4300
O1W···Cl13.217 (5)H2···H7B2.3300
O1W···H1A1.8700H2W···Cl1v2.36 (5)
O1W···H62.9100H2W···H1A2.3400
N1···Cl1vi3.177 (4)H5···H8A2.3300
N1···Cl1vii3.181 (4)H5···Cl1viii3.0900
N1···O1W2.754 (5)H6···H1A2.3100
C3···C5viii3.509 (6)H6···C7xi3.0800
C3···C4viii3.565 (6)H6···O1W2.9100
C4···C3iv3.565 (6)H7A···H8B2.4000
C4···C7iv3.570 (7)H7A···C82.8400
C5···C3iv3.509 (6)H7A···C3viii2.8400
C7···C4viii3.570 (7)H7A···C4viii3.1000
C3···H7Aiv2.8400H7B···H22.3300
C4···H7Aiv3.1000H7C···C82.9300
C5···H7Cix3.0500H7C···C5xii3.0500
C6···H7Cix2.9800H7C···C6xii2.9800
C7···H8B2.8100H8A···H52.3300
C7···H8C2.9500H8B···C72.8100
C7···H6x3.0800H8B···H7A2.4000
C8···H7C2.9300H8C···C72.9500
H1W—O1W—H2W110 (6)C3—C2—H2120.00
H1A—N1—H1B109.00C1—C2—H2120.00
H1A—N1—H1C109.00C4—C5—H5120.00
C1—N1—H1B109.00C6—C5—H5119.00
C1—N1—H1C109.00C5—C6—H6121.00
H1B—N1—H1C109.00C1—C6—H6120.00
C1—N1—H1A109.00C3—C7—H7A109.00
N1—C1—C2119.3 (3)C3—C7—H7B109.00
C2—C1—C6121.8 (3)H7A—C7—H7B109.00
N1—C1—C6118.9 (3)H7A—C7—H7C109.00
C1—C2—C3120.2 (3)C3—C7—H7C110.00
C2—C3—C4118.1 (3)H7B—C7—H7C109.00
C2—C3—C7119.5 (4)C4—C8—H8B109.00
C4—C3—C7122.4 (3)C4—C8—H8C109.00
C3—C4—C8119.8 (3)C4—C8—H8A109.00
C5—C4—C8120.3 (3)H8A—C8—H8C109.00
C3—C4—C5119.9 (3)H8B—C8—H8C109.00
C4—C5—C6121.1 (3)H8A—C8—H8B110.00
C1—C6—C5119.0 (3)
N1—C1—C2—C3178.3 (3)C2—C3—C4—C8−179.7 (4)
C6—C1—C2—C3−0.9 (6)C7—C3—C4—C5−179.6 (4)
N1—C1—C6—C5−178.5 (3)C7—C3—C4—C80.5 (6)
C2—C1—C6—C50.6 (6)C3—C4—C5—C6−0.4 (6)
C1—C2—C3—C40.4 (5)C8—C4—C5—C6179.5 (4)
C1—C2—C3—C7−179.8 (4)C4—C5—C6—C10.0 (6)
C2—C3—C4—C50.2 (5)

Symmetry codes: (i) x, y, z+1; (ii) −x, −y+1, z+1/2; (iii) −x, −y+2, z+1/2; (iv) −x+1/2, y, z+1/2; (v) −x, −y+2, z−1/2; (vi) −x, −y+1, z−1/2; (vii) x, y, z−1; (viii) −x+1/2, y, z−1/2; (ix) x, y+1, z; (x) −x+1/2, y−1, z−1/2; (xi) −x+1/2, y+1, z+1/2; (xii) x, y−1, z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1A···O1W0.89001.87002.754 (5)174.00
N1—H1B···Cl1vi0.89002.30003.177 (4)167.00
N1—H1C···Cl1vii0.89002.31003.181 (4)167.00
O1W—H1W···Cl10.80 (6)2.43 (6)3.217 (5)174 (7)
O1W—H2W···Cl1v0.81 (5)2.36 (5)3.174 (5)176 (2)

Symmetry codes: (vi) −x, −y+1, z−1/2; (vii) x, y, z−1; (v) −x, −y+2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2296).

References

  • Benslimane, M., Merazig, H., Bouacida, S., Denbri, S., Beghidja, A. & Ouahab, L. (2007). Acta Cryst. E63, o3682–o3683.
  • Bouacida, S. (2008). PhD thesis, Montouri-Constantine University, Algeria.
  • Bouacida, S., Merazig, H., Beghidja, A. & Beghidja, C. (2005a). Acta Cryst. E61, m1153–m1155.
  • Bouacida, S., Merazig, H., Beghidja, A. & Beghidja, C. (2005b). Acta Cryst. E61, m2072–m2074.
  • Bouacida, S., Merazig, H., Beghidja, A. & Beghidja, C. (2005c). Acta Cryst. E61, m577–m579.
  • Bouacida, S., Merazig, H. & Benard-Rocherulle, P. (2006). Acta Cryst. E62, o838–o840.
  • Bouacida, S., Merazig, H., Benard-Rocherulle, P. & Rizzoli, C. (2007). Acta Cryst. E63, m379–m381.
  • Brandenburg, K. & Berndt, M. (2001). DIAMOND Crystal Impact, Bonn, Germany.
  • Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst.36, 1103.
  • Fábry, J., Krupková, R. & Studnička, V. (2002). Acta Cryst. E58, o105–o107.
  • Fábry, J., Krupková, R. & Vaněk, P. (2001). Acta Cryst. E57, o1058–o1060.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Linden, A., James, B. D. & Liesegang, J. (1995). Acta Cryst. C51, 2317–2320.
  • Nonius (1998). COLLECT Nonius BV, Delft, The Netherlands.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Rademeyer, M. (2004a). Acta Cryst. C60, m55–m56. [PubMed]
  • Rademeyer, M. (2004b). Acta Cryst. E60, m345–m347.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Singh, G., Kapoor, I. P. S. & Mannan, S. M. (1995a). Thermochim. Acta, 262, 117–127.
  • Singh, G., Kapoor, I. P. S. & Mannan, S. M. (1995b). J. Energetic Mater.13, 141–156.
  • Singh, G., Kapoor, I. P. S., Srivastava, J. & Kaur, J. (2002). J. Therm. Anal. Calorim.69, 681–691.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography