PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 March 1; 65(Pt 3): o516.
Published online 2009 February 13. doi:  10.1107/S1600536809004395
PMCID: PMC2968594

2,5-Dichloro­anilinium chloride monohydrate

Abstract

The title compound, C6H6Cl2N+·Cl·H2O, is composed of discrete cations, choride anions and water mol­ecules, which are connected through N—H(...)Cl, O—H(...)Cl and N—H(...)O hydrogen bonding. Two H atoms of the positively charged –NH3 + group have two chloride acceptors and the other one has the O atom of the water mol­ecule as acceptor. The chloride anions form hydrogen bonds with two H atoms from two different water mol­ecules and two H atoms from two positively charged –NH3 + groups.

Related literature

For water-free 2,5-dichloro­anilinium chloride see: Gray & Jones (2002 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o516-scheme1.jpg

Experimental

Crystal data

  • C6H6Cl2N+·Cl·H2O
  • M r = 216.48
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o516-efi1.jpg
  • a = 7.679 (1) Å
  • b = 6.476 (1) Å
  • c = 19.060 (5) Å
  • β = 96.95 (3)°
  • V = 940.9 (3) Å3
  • Z = 4
  • Cu Kα radiation
  • μ = 8.39 mm−1
  • T = 299 (2) K
  • 0.35 × 0.30 × 0.10 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: ψ scan (North et al., 1968 [triangle]) T min = 0.109, T max = 0.432
  • 3331 measured reflections
  • 1669 independent reflections
  • 1421 reflections with I > 2σ(I)
  • R int = 0.068
  • 3 standard reflections frequency: 120 min intensity decay: 1%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.049
  • wR(F 2) = 0.143
  • S = 1.10
  • 1669 reflections
  • 125 parameters
  • 3 restraints
  • Only H-atom coordinates refined
  • Δρmax = 0.39 e Å−3
  • Δρmin = −0.49 e Å−3

Data collection: CAD-4-PC (Enraf–Nonius, 1996 [triangle]); cell refinement: CAD-4-PC; data reduction: REDU4 (Stoe & Cie, 1987 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2003 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809004395/bt2865sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809004395/bt2865Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for extensions of his research fellowship.

supplementary crystallographic information

Comment

The crystal structure of water free 2,5-dichloroanilinium chloride has been reported (Gray & Jones, 2002). We report herein the crystal structure of 2,5-dichloroanilinium chloride monohydrate. The title compound showed interesting H-bonding in its crystal structure (Fig. 1). Two H-atoms of the positively charged NH3 group have two chloride acceptors and the other H has O atom acceptor of the water molecule, while chloride anions are linked by four-center hydrogen bonds, with each chloride forming H-bonding with two H-atoms, one each from two different water molecules and two H-atoms, one each from two positively charged NH3 groups. This is in comparison with the usual set of hydrogen bonds from NH3 to chloride leading to layer structure observed with water free 2,5-dichloroanilinium chloride (Gray & Jones, 2002), with a short Cl1..Cl3 contact. Further, the water free structure involved four weak interactions, namely the three hydrogen bonds H4···Cl3, H6···Cl2 and H3···Cl1 and the chlorine-chlorine interaction Cl2···Cl3. The crystal packing of (I) through N—H···Cl, O—H···Cl and N—H···O hydrogen bonding (Table 1) is shown in Fig.2

Experimental

The solution of pure 2,5-dichloroaniline (0.02 mole) in ethanol (20 cc) was treated dropwise with dilute hydrochloric acid (>0.025 mole) with constant stirring. The resulting mixture was slowly evaporated at room temperature to obtain 2,5-dichloroanilinium hydrochloride monohydrate. The resultant solid was recrystallized to constant melting point from ethanol. The single crystals used in X-ray diffraction studies were grown in ethanolic solution by slow evaporation at room temperature.

Refinement

H atoms were located in a difference map, and their positional parameters were refined freely except for the water H atoms which were refined with the O—H distances restrained to 0.85 (4) Å and H—H distance restrained to 1.37 (4)Å. All H atoms were refined with isotropic displacement parameters set to 1.2 times of the Ueq of the parent atom.

Figures

Fig. 1.
Molecular structure of the title compound, showing the atom labeling scheme. The displacement ellipsoids are drawn at the 50% probability level. The H atoms are represented as small spheres of arbitrary radii.
Fig. 2.
Molecular packing of the title compound with hydrogen bonding shown as dashed lines.

Crystal data

C6H6Cl2N+·Cl·H2OF(000) = 440
Mr = 216.48Dx = 1.528 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54180 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 7.679 (1) Åθ = 6.0–20.3°
b = 6.476 (1) ŵ = 8.39 mm1
c = 19.060 (5) ÅT = 299 K
β = 96.95 (3)°Plate, colourless
V = 940.9 (3) Å30.35 × 0.30 × 0.10 mm
Z = 4

Data collection

Enraf–Nonius CAD-4 diffractometer1421 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.068
graphiteθmax = 67.2°, θmin = 4.7°
ω/2θ scansh = −9→9
Absorption correction: ψ scan (North et al., 1968)k = 0→7
Tmin = 0.109, Tmax = 0.432l = −22→22
3331 measured reflections3 standard reflections every 120 min
1669 independent reflections intensity decay: 1.0%

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Only H-atom coordinates refined
wR(F2) = 0.143w = 1/[σ2(Fo2) + (0.0831P)2 + 0.169P] where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.012
1669 reflectionsΔρmax = 0.39 e Å3
125 parametersΔρmin = −0.49 e Å3
3 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0126 (16)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.64647 (11)−0.35617 (13)0.11963 (6)0.0720 (4)
Cl20.84843 (12)0.33419 (16)−0.08256 (4)0.0716 (4)
N10.8342 (3)0.0359 (4)0.16645 (11)0.0476 (6)
H110.872 (4)−0.079 (6)0.1920 (19)0.057*
H120.736 (5)0.083 (5)0.1868 (18)0.057*
H130.917 (5)0.128 (6)0.179 (2)0.057*
C10.7922 (3)0.0096 (5)0.09016 (13)0.0441 (6)
C20.7056 (4)−0.1657 (5)0.06338 (18)0.0529 (7)
C30.6664 (4)−0.1873 (6)−0.0093 (2)0.0635 (9)
H30.604 (5)−0.303 (7)−0.024 (2)0.076*
C40.7107 (4)−0.0333 (6)−0.05366 (16)0.0626 (9)
H40.681 (5)−0.046 (6)−0.100 (2)0.075*
C50.7943 (4)0.1398 (5)−0.02646 (15)0.0534 (7)
C60.8371 (4)0.1651 (5)0.04598 (15)0.0474 (6)
H60.905 (4)0.288 (5)0.065 (2)0.057*
O10.0902 (3)0.3197 (4)0.19565 (15)0.0697 (7)
H1A0.200 (4)0.301 (6)0.206 (3)0.084*
H1B0.067 (5)0.413 (6)0.223 (2)0.084*
Cl30.50259 (9)0.21839 (12)0.22100 (4)0.0565 (3)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0655 (6)0.0603 (5)0.0883 (6)−0.0101 (3)0.0009 (5)0.0022 (4)
Cl20.0671 (6)0.0981 (7)0.0499 (4)0.0101 (4)0.0085 (4)0.0145 (4)
N10.0485 (13)0.0551 (13)0.0379 (10)0.0017 (11)−0.0002 (9)−0.0007 (10)
C10.0377 (13)0.0528 (14)0.0402 (11)0.0065 (11)−0.0015 (10)−0.0062 (11)
C20.0400 (13)0.0555 (16)0.0615 (17)0.0031 (12)−0.0004 (13)−0.0084 (13)
C30.0500 (17)0.0694 (19)0.0677 (19)0.0019 (15)−0.0065 (15)−0.0270 (17)
C40.0522 (16)0.086 (2)0.0470 (14)0.0111 (16)−0.0034 (13)−0.0205 (15)
C50.0436 (14)0.076 (2)0.0405 (13)0.0130 (13)0.0032 (12)−0.0027 (13)
C60.0415 (13)0.0578 (15)0.0419 (13)0.0044 (12)0.0009 (11)−0.0054 (12)
O10.0571 (14)0.0722 (16)0.0776 (15)−0.0017 (11)−0.0004 (12)−0.0175 (12)
Cl30.0529 (5)0.0671 (5)0.0484 (4)−0.0018 (3)0.0015 (3)−0.0101 (3)

Geometric parameters (Å, °)

Cl1—C21.731 (3)C3—C41.377 (6)
Cl2—C51.735 (3)C3—H30.92 (4)
N1—C11.461 (3)C4—C51.362 (5)
N1—H110.92 (4)C4—H40.88 (4)
N1—H120.94 (4)C5—C61.390 (4)
N1—H130.88 (4)C6—H61.00 (4)
C1—C21.382 (4)O1—H1A0.85 (3)
C1—C61.383 (4)O1—H1B0.83 (3)
C2—C31.388 (5)
C1—N1—H11117 (2)C4—C3—H3124 (3)
C1—N1—H12111 (2)C2—C3—H3116 (3)
H11—N1—H12105 (3)C5—C4—C3120.1 (3)
C1—N1—H13114 (2)C5—C4—H4121 (3)
H11—N1—H13104 (3)C3—C4—H4119 (3)
H12—N1—H13105 (3)C4—C5—C6121.3 (3)
C2—C1—C6121.2 (3)C4—C5—Cl2120.0 (2)
C2—C1—N1120.1 (3)C6—C5—Cl2118.8 (3)
C6—C1—N1118.7 (3)C1—C6—C5118.2 (3)
C1—C2—C3119.2 (3)C1—C6—H6121 (2)
C1—C2—Cl1120.5 (2)C5—C6—H6121 (2)
C3—C2—Cl1120.3 (3)H1A—O1—H1B104 (4)
C4—C3—C2120.0 (3)
C6—C1—C2—C31.3 (4)C3—C4—C5—C60.2 (5)
N1—C1—C2—C3179.8 (3)C3—C4—C5—Cl2−179.5 (3)
C6—C1—C2—Cl1−178.6 (2)C2—C1—C6—C5−0.6 (4)
N1—C1—C2—Cl1−0.2 (4)N1—C1—C6—C5−179.1 (3)
C1—C2—C3—C4−1.3 (5)C4—C5—C6—C1−0.2 (4)
Cl1—C2—C3—C4178.7 (3)Cl2—C5—C6—C1179.6 (2)
C2—C3—C4—C50.5 (5)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H11···Cl3i0.92 (4)2.24 (4)3.123 (3)162 (3)
N1—H12···Cl30.94 (4)2.16 (4)3.099 (3)172 (3)
N1—H13···O1ii0.88 (4)1.82 (4)2.699 (4)175 (4)
O1—H1A···Cl30.85 (3)2.37 (3)3.212 (3)172 (4)
O1—H1B···Cl3iii0.83 (3)2.34 (3)3.158 (3)169 (4)

Symmetry codes: (i) −x+3/2, y−1/2, −z+1/2; (ii) x+1, y, z; (iii) −x+1/2, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2865).

References

  • Enraf–Nonius (1996). CAD-4-PC Enraf–Nonius, Delft, The Netherlands.
  • Gray, L. & Jones, P. G. (2002). Z. Naturforsch. Teil B, 57, 73–82.
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Stoe & Cie (1987). REDU4 Stoe & Cie, Darmstadt, Germany.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography